Advertisement

Depth Peeling Algorithm for the Distance Field Computation of Overlapping Objects

  • Marcin Ryciuk
  • Joanna Porter-Sobieraj
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8033)

Abstract

This article describes a fast and hardware-accelerated voxelization algorithm which utilizes depth and stencil buffers. The algorithm is an extension of the depth peeling approach. It does not constrain the complexity or geometry of voxelized objects and, unlike other depth peeling methods, works correctly for solids that overlap each other. The output of the algorithm is a signed distance field, which can be a grid or an octree containing an approximation of the distance to the surface of a solid.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fang, S., Chen, H.: Hardware accelerated voxelization. Computer & Graphics 24(3), 433–442 (2000)CrossRefGoogle Scholar
  2. 2.
    Karabassi, E., Papaioannou, G., Theoharis, T.: A fast depth-buffer-based voxelization algorithm. ACM Journal of Graphics Tools 4(4), 5–10 (1999)CrossRefGoogle Scholar
  3. 3.
    Passalis, G., Toderici, G., Theoharis, T., Kakadiaris, I.: General voxelization algorithm with scalable GPU implementation. Journal of Graphics, GPU, and Game Tools 12(1), 61–71 (2007)CrossRefGoogle Scholar
  4. 4.
    Huang, J., Yagel, R., Filippov, V., Kurzion, Y.: An accurate method for voxelizing polygon meshes. In: Proceedings of the 1998 IEEE Symposium on Volume Visualization, pp. 119–126 (1998)Google Scholar
  5. 5.
    Eisemann, E., Décoret, X.: Single-pass GPU solid voxelization for real-time applications. In: Proceedings of Graphics Interface, pp. 73–80 (2008)Google Scholar
  6. 6.
    Nichols, G., Penmatsa, R., Wyman, C.: Interactive, Multiresolution Image-Space Rendering for Dynamic Area Lighting. Computer Graphics Forum 29(4), 1279–1288 (2010)CrossRefGoogle Scholar
  7. 7.
    Pantaleoni, J.: VoxelPipe: a programmable pipeline for 3D voxelization. In: Proceedings of the ACM SIGGRAPH Symposium on High Performance Graphics, pp. 99–106 (2011)Google Scholar
  8. 8.
    Sigg, C., Peikert, P., Gross, M.: Signed Distance Transform Using Graphics Hardware. In: Proceedings of the 14th IEEE Visualization, pp. 83–90 (2003)Google Scholar
  9. 9.
    Sud, A., Otaduy, M.A., Manocha, D.: DiFi: Fast 3D distance field computation using graphics hardware. Computer Graphics Forum 23(3), 557–566 (2004)CrossRefGoogle Scholar
  10. 10.
    Sud, A., Govindaraju, N., Gayle, R., Manocha, D.: Interactive 3D distance field computation using linear factorization. In: Proceedings of the 2006 Symposium on Interactive 3D Graphics and Games, pp. 117–124 (2006)Google Scholar
  11. 11.
    Chang, B., Cha, D., Ihm, I.: Computing local signed distance fields for large polygonal models. In: Proceedings of the 10th Joint Eurographics/IEEE - VGTC conference on Visualization, pp. 799–806 (2008)Google Scholar
  12. 12.
    Mammen, A.: Transparency and antialiasing algorithms implemented with the virtual pixel maps technique. IEEE Computer Graphics and Applications 9(4), 43–55 (1989)CrossRefGoogle Scholar
  13. 13.
    Everitt, C.: Interactive order-independent transparency. Technical report, NVIDIA Corporation (2001)Google Scholar
  14. 14.
    Liu, B., Wei, L., Xu, Y., Wu, E.: Multi-layer depth peeling via fragment sort. In: CAD/Graphics, pp. 452–456 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Marcin Ryciuk
    • 1
  • Joanna Porter-Sobieraj
    • 1
  1. 1.Faculty of Mathematics and Information ScienceWarsaw University of TechnologyWarsawPoland

Personalised recommendations