Predicting Evolution and Visualizing High-Dimensional Fitness Landscapes

  • Bjørn ØstmanEmail author
  • Christoph Adami
Part of the Emergence, Complexity and Computation book series (ECC, volume 6)


The tempo and mode of an adaptive process is strongly determined by the structure of the fitness landscape that underlies it. In order to be able to predict evolutionary outcomes (even on the short term), we must know more about the nature of realistic fitness landscapes than we do today. For example, in order to know whether evolution is predominantly taking paths that move upwards in fitness and along neutral ridges, or else entails a significant number of valley crossings, we need to be able to visualize these landscapes: we must determine whether there are peaks in the landscape, where these peaks are located with respect to one another, and whether evolutionary paths can connect them. This is a difficult task because genetic fitness landscapes (as opposed to those based on traits) are high-dimensional, and tools for visualizing such landscapes are lacking. In this contribution, we focus on the predictability of evolution on rugged genetic fitness landscapes, and determine that peaks in such landscapes are highly clustered: high peaks are predominantly close to other high peaks. As a consequence, the valleys separating such peaks are shallow and narrow, such that evolutionary trajectories towards the highest peak in the landscape can be achieved via a series of valley crossings.


Deleterious Mutation Fitness Landscape Adaptive Landscape Genotype Space Rugged Landscape 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adami, C.: Introduction to Artificial Life. TELOS Springer Verlag, New York (1998)CrossRefzbMATHGoogle Scholar
  2. 2.
    Adami, C.: Digital genetics: Unraveling the genetic basis of evolution. Nature Reviews Genetics 7(2), 109–118 (2006)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Barrick, J.E., Yu, D.S., Yoon, S.H., Jeong, H., Oh, T.K., Schneider, D., Lenski, R.E., Kim, J.F.: Genome evolution and adaptation in a long–term experiment with Escherichia coli. Nature 461(7268), 1243–1247 (2009)CrossRefGoogle Scholar
  4. 4.
    Beerenwinkel, N., Pachter, L., Sturmfels, B., Elena, S.F., Lenski, R.E.: Analysis of epistatic interactions and fitness landscapes using a new geometric approach. BMC Evolutionary Biology 7(1), 60:1–60:12 (2007)Google Scholar
  5. 5.
    Blount, Z.D., Barrick, J.E., Davidson, C.J., Lenski, R.E.: Genomic analysis of a key innovation in an experimental Escherichia coli population. Nature 489(7417), 513–518 (2012)CrossRefGoogle Scholar
  6. 6.
    Burch, C.L., Chao, L.: Evolvability of an RNA virus is determined by its mutational neighbourhood. Nature 406(6796), 625–628 (2000)CrossRefGoogle Scholar
  7. 7.
    Bush, R.M.: Predicting adaptive evolution. Nature Reviews 2, 387–392 (2001)CrossRefGoogle Scholar
  8. 8.
    Chou, H., Chiu, H., Delaney, N., Segrè, D., Marx, C.J.: Diminishing returns epistasis among beneficial mutations decelerates adaptation. Science 332, 1190–1192 (2011)CrossRefGoogle Scholar
  9. 9.
    Covacci, A., Rappuoli, R.: Helicobacter pylori: molecular evolution of a bacterial quasi-species. Current Opinion in Microbiology 1, 96–102 (1998)CrossRefGoogle Scholar
  10. 10.
    Doebeli, M., Dieckmann, U.: Evolutionary branching and sympatric speciation caused by different types of ecological interactions. The American Naturalist 156, S77–S101 (2000)Google Scholar
  11. 11.
    Eigen, M.: Selforganization of matter and the evolution of biological macromolecules. Die Naturwissenschaften 58(10), 465–523 (1971)CrossRefGoogle Scholar
  12. 12.
    Eigen, M., McCaskill, J., Schuster, P.: Molecular quasi–species. The Journal of Physical Chemistry 92(24), 6881–6891 (1988)CrossRefGoogle Scholar
  13. 13.
    Elena, S.F., Lenski, R.E.: Test of synergistic interactions among deleterious mutations in bacteria. Nature 390, 395–398 (1997)CrossRefGoogle Scholar
  14. 14.
    Ellison, G.: Basins of attraction, long–run stochastic stability, and the speed of step–by–step evolution. Review of Economic Studies 67(1), 17–45 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Fisher, R.A.: The Genetical Theory of Natural Selection. Oxford University Press, Oxford (1930)zbMATHGoogle Scholar
  16. 16.
    Franke, J., Klözer, A., de Visser, J.A.G.M., Krug, J.: Evolutionary accessibility of mutational pathways. PLoS Comput. Biol. 7(8), e1002134 (2011)Google Scholar
  17. 17.
    Gavrilets, S.: Evolution and speciation on holey adaptive landscapes. Trends in Ecology & Evolution 12(8), 307–312 (1997)CrossRefGoogle Scholar
  18. 18.
    Gavrilets, S.: Fitness Landscapes and the Origin of Species. Princeton University Press, Princeton (2004)Google Scholar
  19. 19.
    Gerrish, P.J., Lenski, R.E.: The fate of competing beneficial mutations in an asexual population. Genetica 102/103, 127–144 (1998)Google Scholar
  20. 20.
    Hayden, E.J., Wagner, A.: Environmental change exposes beneficial epistatic interactions in a catalytic RNA. Proceedings of the Royal Society B: Biological Sciences 279(1742), 3418–3425 (2012)CrossRefGoogle Scholar
  21. 21.
    Hinkley, T., Martins, J., Chappey, C., Haddad, M., Stawiski, E., Whitcomb, J.M., Petropoulos, C.J., Bonhoeffer, S.: A systems analysis of mutational effects in HIV-1 protease and reverse transcriptase. Nature Genetics 43(5), 487–489 (2011)CrossRefGoogle Scholar
  22. 22.
    Jain, K.: Deterministic and stochastic regimes of asexual evolution on rugged fitness landscapes. Genetics 175, 1275–1288 (2007)CrossRefGoogle Scholar
  23. 23.
    Johnson, T., Barton, N.H.: The effect of deleterious alleles on adaptation in asexual organisms. Genetics 162, 395–411 (2002)Google Scholar
  24. 24.
    Kaplan, J.: The end of the adaptive landscape metaphor? Biology & Philosophy 23(5), 625–638 (2008)CrossRefGoogle Scholar
  25. 25.
    Kauffman, S., Levin, S.: Towards a general theory of adaptive walks on rugged landscapes. Journal of Theoretical Biology 128(1), 11–45 (1987)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Kauffman, S.: The Origins of Order. Oxford University Press, New York (1993)Google Scholar
  27. 27.
    Kouyos, R.D., Leventhal, G.E., Hinkley, T., Haddad, M., Whitcomb, J.M., Petropoulos, C.J., Bonhoeffer, S.: Exploring the complexity of the HIV-1 fitness landscape. PLoS Genetics 8(3), e1002551 (2012)Google Scholar
  28. 28.
    Kryazhimskiy, S., Dushoff, J., Bazykin, G.A., Plotkin, J.B.: Prevalence of epistasis in the evolution of influenza a surface proteins. PLoS Genetics 7, e1001301 (2011)Google Scholar
  29. 29.
    Kvitek, D.J., Sherlock, G.: Reciprocal sign epistasis between frequently experimentally evolved adaptive mutations causes a rugged fitness landscape. PLoS Genetics 7(4), e1002056 (2011)Google Scholar
  30. 30.
    Khan, A.I., Dinh, D.M., Schneider, D., Lenski, R.E., Cooper, T.F.: Negative epistasis between beneficial mutations in an evolving bacterial population. Science 332, 1193–1196 (2011)CrossRefGoogle Scholar
  31. 31.
    Lunzer, M., Miller, S.P., Felsheim, R., Dean, A.M.: The biochemical architecture of an ancient adaptive landscape. Science 310, 499–501 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Martins, J.Z.R.: The exploration of HIV fitness landscapes. Ph.D. thesis, Universiy of Zurich (2012)Google Scholar
  33. 33.
    McCandlish, D.: Visualizing fitness landscapes. Evolution 65(6), 1544–1558 (2011)CrossRefGoogle Scholar
  34. 34.
    Mustonen, V., Lässig, M.: From fitness landscapes to seascapes: non-equilibrium dynamics of selection and adaptation. Trends in Genetics 25(3), 111–119 (2009)CrossRefGoogle Scholar
  35. 35.
    Nosil, P., Harmon, L.: Ecological explanations for (incomplete) speciation. Trends in Ecology & Evolution 24(3), 145–156 (2009)CrossRefGoogle Scholar
  36. 36.
    Ofria, C., Wilke, C.: Avida: A software platform for research in computational evolutionary biology. Artificial Life 10, 191–229 (2004)CrossRefGoogle Scholar
  37. 37.
    Orr, H.A.: The rate of adaptation in asexuals. Genetics 155, 961–968 (2000)Google Scholar
  38. 38.
    Østman, B., Hintze, A., Adami, C.: Critical properties of complex fitness landscapes. In: Fellerman, H., Dörr, M., Hanczyc, M.M., Ladegaard Laursen, L., Maurer, S., Merkle, D., Monnard, P.A., Stoy, K., Rasmussen, S. (eds.) Proc. of the ALife XII Conference, pp. 126–132. MIT Press (2010)Google Scholar
  39. 39.
    Østman, B., Hintze, A., Adami, C.: Impact of epistasis and pleiotropy on evolutionary adaptation. Proceedings of the Royal Society B: Biological Sciences 279, 247–256 (2012)CrossRefGoogle Scholar
  40. 40.
    Pigliucci, M.: Adaptive landscapes, phenotypic space, and the power of metaphors. The Quarterly Review of Biology 83(3), 283–287 (2008)CrossRefGoogle Scholar
  41. 41.
    Pitt, J., Ferre-D’Amare, A.: Rapid construction of empirical RNA fitness landscapes. Science 330, 376–379 (2010)CrossRefGoogle Scholar
  42. 42.
    Richter, H.: Coupled map lattices as spatio–temporal fitness functions: Landscape measures and evolutionary optimization. Physica D 237(2), 167–186 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Schluter, D.: Ecology and the origin of species. Trends in Ecology & Evolution 16(7), 372–380 (2001)CrossRefGoogle Scholar
  44. 44.
    Turelli, M., Barton, N.H., Coyne, J.A.: Theory and speciation. Trends in Ecology & Evolution 16(7), 330–343 (2001)CrossRefGoogle Scholar
  45. 45.
    Weissman, D., Desai, M., Fisher, D.: The rate at which asexual populations cross fitness valleys. Theoretical Population Biology 75, 286–300 (2009)CrossRefzbMATHGoogle Scholar
  46. 46.
    Whitlock, M.C., Phillips, P.C., Moore, F.B.G., Tonsor, S.J.: Multiple fitness peaks and epistasis. Annual Review of Ecology and Systematics 26, 601–629 (1995)CrossRefGoogle Scholar
  47. 47.
    Whitlock, M.C.: Founder effects and peak shifts without genetic drift: Adaptive peak shifts occur easily when environments fluctuate slightly. Evolution 51(4), 1044–1048 (1997)CrossRefGoogle Scholar
  48. 48.
    Wielgoss, S., Barrick, J.E., Tenaillon, O., Wiser, M.J., Dittmar, W.J., Cruveiller, S., Chane-Woon-Ming, B., Médigue, C., Lenski, R.E., Schneider, D.: Mutation rate dynamics in a bacterial population reflect tension between adaptation and genetic load. Proceedings of the National Academy of Sciences 110(1), 222–227 (2013)CrossRefGoogle Scholar
  49. 49.
    Wiles, J., Tonkes, B.: Hyperspace geography: Visualizing fitness landscapes beyond 4D. Artificial Life 12, 211–216 (2006)CrossRefGoogle Scholar
  50. 50.
    Wilke, C.O.: Probability of fixation of an advantageous mutant in a viral quasispecies. Genetics 163, 467–474 (2003)Google Scholar
  51. 51.
    Wright, S.: Evolution in Mendelian populations. Genetics 16(2), 97–159 (1931)Google Scholar
  52. 52.
    Wright, S.: The roles of mutation, inbreeding, crossbreeding and selection in evolution. In: Jones, D. (ed.) Proceedings of the 6th International Congress on Genetics, vol. 1, pp. 356–366 (1932)Google Scholar
  53. 53.
    Wright, S.: The shifting balance theory and macroevolution. Annual Review of Genetics 16, 1–19 (1982)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department Microbiology and Molecular Genetics & BEACON Center for the Study of Evolution in ActionMichigan State UniversityEast LansingU.S.A.

Personalised recommendations