Fusion of Facial Regions Using Color Information in a Forensic Scenario

  • Pedro Tome
  • Ruben Vera-Rodriguez
  • Julian Fierrez
  • Javier Ortega-Garcia
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8259)


This paper reports an analysis of the benefits of using color information on a region-based face recognition system. Three different color spaces are analysed (RGB, YC b C r , lαβ) in a very challenging scenario matching good quality mugshot images against video surveillance images. This scenario is of special interest for forensics, where examiners carry out a comparison of two face images using the global information of the faces, but paying special attention to each individual facial region (eyes, nose, mouth, etc.). This work analyses the discriminative power of 15 facial regions comparing both the grayscale and color information. Results show a significant improvement of performance when fusing several regions of the face compared to just using the whole face image. A further improvement of performance is achieved when color information is considered.


Face recognition facial regions forensics color information facial components video surveillance at a distance 


  1. 1.
    Ocegueda, O., Shah, S.K., Kakadiaris, I.A.: Which parts of the face give out your identity? In: IEEE Proccedings of CVPR, pp. 641–648 (2011)Google Scholar
  2. 2.
    Bonnen, K., Klare, B., Jain, A.K.: Component-based representation in automated face recognition. IEEE Transactions on Information Forensics and Security 8(1), 239–253 (2013)CrossRefGoogle Scholar
  3. 3.
    Tome, P., Fierrez, J., Vera-Rodriguez, R., Ramos, D.: Identification using face regions: Application and assessment in forensic scenarios. Forensic Science International (submitted 2013)Google Scholar
  4. 4.
    Tome, P., Blazquez, L., Vera-Rodriguez, R., Fierrez, J., Ortega-Garcia, J., Exposito, N., Leston, P.: Understanding the discrimination power of facial regions in forensic casework. In: International Workshop on Biometrics and Forensics, Lisboa, Portugal (April 2013)Google Scholar
  5. 5.
    Singh, S.K., Chauhan, D.S., Vatsa, M., Singh, R.: A robust skin color based face detection algorithm, tamkang. Journal of Science and Engineering 6, 227–234 (2003)Google Scholar
  6. 6.
    Liu, Z., Liu, C.: Robust face recognition using color information. In: Tistarelli, M., Nixon, M.S. (eds.) ICB 2009. LNCS, vol. 5558, pp. 122–131. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 3rd edn. Prentice-Hall, Inc., Upper Saddle River (2006)Google Scholar
  8. 8.
    Ruderman, D.L., Cronin, T.W., Chiao, C.C.: Statistics of coneresponses to natural images: implications for visual coding. Journal Optical Society of America 15, 2036–2045 (1998)CrossRefGoogle Scholar
  9. 9.
    Grgic, M., Delac, K., Grgic, S.: Scface - surveillance cameras face database. Multimedia Tools Appl. 51(3), 863–879 (2011)CrossRefGoogle Scholar
  10. 10.
    Jain, A., Nandakumar, K., Ross, A.: Score normalization in multimodal biometric systems. Pattern Recognition 38(12), 2270–2285 (2005)CrossRefGoogle Scholar
  11. 11.
    Fierrez, J.: Adapted Fusion Schemes for Multimodal Biometric Authentication. PhD thesis, Univ. Politecnica de Madrid (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Pedro Tome
    • 1
  • Ruben Vera-Rodriguez
    • 1
  • Julian Fierrez
    • 1
  • Javier Ortega-Garcia
    • 1
  1. 1.Biometric Recognition Group-ATVS, EPSUniversidad Autonoma de MadridMadridSpain

Personalised recommendations