A Novel Right Ventricle Segmentation Approach from Local Spatio-temporal MRI Information

  • Angélica Maria Atehortúa Labrador
  • Fabio Martínez
  • Eduardo Romero Castro
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8259)


This paper presents a novel method that follows the right ventricle (RV) shape during a whole cardiac cycle in magnetic resonance sequences (MRC). The proposed approach obtains an initial coarse segmentation by a bidirectional per pixel motion descriptor. Then a refined segmentation is obtained by fusing the previous segmentation with geometrical observations at each frame. A main advantage of the proposed approach is a robust MRI heart characterization without any prior information. The proposed approach achieves a Dice Score of 0.62 evaluated over 32 patients.


Right Ventricle Segmentation Cardiac MRI Cine Local Motion Models Structural Information 


  1. 1.
    Roger, V., Go, A., Lloyd-Jones, D., Adams, R., Berry I, J.: Heart disease and stroke statisticts - 2012 update: A report from the american heart association. Circulation 125, 200–220 (2012)Google Scholar
  2. 2.
    Haddad, F., Doyle, R., Murphy, D., Hunt, S.: Right ventricular function in cardiovascular disease, part ii: pathophysiology, clinical importance, and management of right ventricular failure. Circulation 117, 1717–1731 (2008)CrossRefGoogle Scholar
  3. 3.
    Caudron, J., Fares, J., Lefebvre, V., Vivier, V., Petitjean, C., Dacher, J.: Cardiac mri assessment of right ventricular function in acquired heart disease: factors of variability. Acad. Radiol. 19, 991–1002 (2012)CrossRefGoogle Scholar
  4. 4.
    Baur, L.: Magnetic resonance imaging: the preferred imaging method for evaluation of the right ventricle. The International Journal of Cardiovascular Imaging 24, 699–700 (2008)CrossRefGoogle Scholar
  5. 5.
    Haddad, F., Hunt, S., Rosenthal, D., Murphy, D.: Right ventricular function in cardiovascular disease, part i: Anatomy, physiology, aging, and functional assessment of the right ventricle. Circulation 117, 1436–1448 (2008)CrossRefGoogle Scholar
  6. 6.
    Petitjean, C., Dacher, J.: A review of segmentation methods in short axis cardiac mr images. Med. Image Anal. 15, 169–184 (2011)CrossRefGoogle Scholar
  7. 7.
    Caudron, J., Fares, J., Vivier, P., Lefebvre, V., Petitjean, C., Dacher, J.: Diagnostic accuracy and variability of three semi-quantitative methods for assessing right ventricular systolic function from cardiac mri in patients with acquired heart disease. Eur. Radiol., 2111–2120 (2011)Google Scholar
  8. 8.
    Cocosco, C., Niessen, W., Netsch, T., Vonken, E., Lund, G., Stork, A., Viergever, M.: Automatic image-driven segmentation of the ventricles in cardiac cine MRI. J. Magn. Reson. Imaging 28, 366–374 (2008)CrossRefGoogle Scholar
  9. 9.
    Wang, C., Peng, C., Chen, H.: A simple and full automatic right ventricle segmentation method for 4-dimensional cardiac MR images. In: RV Segmentation Challenge in Cardiac MRI MICCAI 2012 (2012)Google Scholar
  10. 10.
    Punithakumar, K., Ayed, I.B., Islam, A., Goela, A., Ross, I.G., Chong, J., Li, S.: Regional heart motion abnormality detection: An information theoretic approach. Medical Image Analysis 17(3), 311–324 (2013)CrossRefGoogle Scholar
  11. 11.
    Manzanera, A., Richefeu, J.C.: A new motion detection algorithm based on σ-δ background estimation. Pattern Recogn. Lett. 28(3), 320–328 (2007)CrossRefGoogle Scholar
  12. 12.
    Ridler, T., Calvard, S.: Picture thresholding using an iterative selection method. IEEE Transactions on Systems, Man and Cybernetics 8(8), 630–632 (1978)CrossRefGoogle Scholar
  13. 13.
    Canny, J.: A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-8(6), 679–698 (1986)CrossRefGoogle Scholar
  14. 14.
    Download MRI Data from RV segmentation Challenge MICCAI 2012 (2012),
  15. 15.
    Evaluation Framework Right Ventricle Segmentation (2012),
  16. 16.
    Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945)CrossRefGoogle Scholar
  17. 17.
    Huttenlocher, D., Klanderman, G., Rucklidge, W.: Comparing images using the hausdorff distance. IEEE Transactions on Pattern Analysis and Machine Intelligence 15(9), 850–863 (1993)CrossRefGoogle Scholar
  18. 18.
    Goetschalckx, K., Rademakers, F., Bogaert, J.: Right ventricular function by MRI. Curr. Opin. Cardiol., 451–455 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Angélica Maria Atehortúa Labrador
    • 1
  • Fabio Martínez
    • 1
  • Eduardo Romero Castro
    • 1
  1. 1.CIM LABUniversidad Nacional de Colombia, Ciudad Universitaria, Facultad de Medicina Centro de telemedicinaBogotáColombia

Personalised recommendations