Improving the Efficiency of MECoMaP: A Protein Residue-Residue Contact Predictor

  • Alfonso E. Márquez Chamorro
  • Federico Divina
  • Jesús S. Aguilar-Ruiz
  • Cosme E. Santiesteban Toca
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8259)


This work proposes an improvement of the multi-objective evolutionary method for the protein residue-residue contact prediction called MECoMaP. This method bases its prediction on physico-chemical properties of amino acids, structural features and evolutionary information of the proteins. The evolutionary algorithm produces a set of decision rules that identifies contacts between amino acids. These decision rules generated by the algorithm represent a set of conditions to predict residue-residue contacts. A new encoding used, a fast evaluation of the examples from the training data set and a treatment of unbalanced classes of data were considered to improve the the efficiency of the algorithm.


protein structure prediction residue-residue contact multi-objective optimization evolutionary computation 


  1. 1.
    Tegge, A., Wang, Z., Eickholt, J., Cheng, J.: Nncon: Improved protein contact map prediction using 2d-recursive neural networks. Nucleic Acids Research 37(2), 515–518 (2009)CrossRefGoogle Scholar
  2. 2.
    Jones, D.T., Buchan, D.W., Cozzetto, D., Pontil, M.: Psicov: precise structural contact prediction using sparse inverse covariance estimation on large multiple sequence alignments. Bioinformatics 28(2), 184–190 (2012)CrossRefGoogle Scholar
  3. 3.
    Calvo, J.C., Ortega, J.: Parallel protein structure prediction by multiobjective optimization. Parallel, Distributed and Network-based Processing 12(4), 407–413 (2009)Google Scholar
  4. 4.
    Marquez-Chamorro, A.E., Asencio, G., Divina, F., Aguilar-Ruiz, J.S.: Evolutionary decision rules for predicting protein contact maps. Pattern Analysis and Applications, PAAA (September 1-13, 2012)Google Scholar
  5. 5.
    Russell, R.B., Betts, M.J., Barnes, M.R.: Amino acid properties and consequences of subsitutions. In: Bioinformatics for Geneticists. Wiley (2003)Google Scholar
  6. 6.
    Fariselli, P., Olmea, O., Valencia, A., Casadio, R.: Prediction of contact map with neural networks and correlated mutations. Protein Engineering 14, 133–154 (2001)Google Scholar
  7. 7.
    Cheng, J., Baldi, P.: Improved residue contact prediction using support vector machines and a large feature set. Bioinformatics 8, 113 (2007)Google Scholar
  8. 8.
    Gupta, N., Mangal, N., Biswas, S.: Evolution and similarity evaluation of protein structures in contact map space. Proteins: Structure, Function, and Bioinformatics 59, 196–204 (2005)CrossRefGoogle Scholar
  9. 9.
    Kyte, J., Doolittle, R.F.: A simple method for displaying the hydropathic character of a protein. J. J. Mol. Bio. 157, 105–132 (1982)CrossRefGoogle Scholar
  10. 10.
    Grantham, R.: Amino acid difference formula to help explain protein evolution. J. J. Mol. Bio. 185, 862–864 (1974)Google Scholar
  11. 11.
    Klein, P., Kanehisa, M., DeLisi, C.: Prediction of protein function from sequence properties: Discriminant analysis of a data base. Bioch. Bioph. 787, 221–226 (1984)CrossRefGoogle Scholar
  12. 12.
    Adelson-Velskii, G., Landis, E.M.: An algorithm for the organization of information. Proceedings of the USSR Academy of Sciences; Soviet Math. 3, 1259–1263Google Scholar
  13. 13.
    Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.: The weka data mining software: An update. SIGKDD Explorations 11 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Alfonso E. Márquez Chamorro
    • 1
  • Federico Divina
    • 1
  • Jesús S. Aguilar-Ruiz
    • 1
  • Cosme E. Santiesteban Toca
    • 2
  1. 1.School of EngineeringPablo de Olavide University of SevillaSpain
  2. 2.Centro de BioplantasUniversity of Ciego de AvilaCuba

Personalised recommendations