Applied Plant Cell Biology pp 103-130

Part of the Plant Cell Monographs book series (CELLMONO, volume 22)

| Cite as

The Biotechnological Potential of Cytokinin Status Manipulation

Chapter

Abstract

Cytokinins are highly conserved plant hormones with a long evolutionary history that regulate various aspects of plant growth and development. The genetic background of the mechanisms involved in the regulation of plants’ cytokinin status has recently been elucidated. Studies on transgenic plants with altered cytokinin biosynthesis, metabolism, degradation, or signaling revealed interesting consequences of cytokinin deficiency or disruption of cytokinin perception that can be applied in plant biotechnology and agriculture. Cytokinin levels and the sensing thereof can be manipulated using transgenic approaches and by treating plants with novel exogenous compounds in order to promote root system development, biomass formation, yield-forming traits, nutrient uptake, and tolerance of biotic and abiotic stresses. This chapter provides an overview of recent findings concerning the molecular basis and genetic background of cytokinin signaling and metabolism and the ways in which they can be manipulated to tailor plants’ traits to meet specific requirements.

References

  1. Arata Y, Nagasawa-Iida A, Uneme H, Nakajima H, Kakimoto T, Sato R (2010) The phenylquinazoline compound S-4893 is a non-competitive cytokinin antagonist that targets Arabidopsis cytokinin receptor CRE1 and promotes root growth in Arabidopsis and rice. Plant Cell Physiol 51:2047–2059PubMedGoogle Scholar
  2. Argyros RD, Mathews DE, Chiang YH, Palmer CM, Thibault DM, Etheridge N, Argyros DA, Mason MG, Kieber JJ, Schaller GE (2008) Type B response regulators of Arabidopsis play key roles in cytokinin signaling and plant development. Plant Cell 20:2102–2116PubMedCentralPubMedGoogle Scholar
  3. Ashikari M, Sakakibara H, Lin SY, Yamamoto T, Takashi T, Nishimura A, Angeles ER, Qian Q, Kitano H, Matsuoka M (2005) Cytokinin oxidase regulates rice grain production. Science 309:741–745PubMedGoogle Scholar
  4. Astot C, Doležal K, Moritz T, Sandberg G (2000) Deuterium in vivo labelling of cytokinins in Arabidopsis thaliana analysed by capillary liquid chromatography/frit-fast atom bombardment mass spectrometry. J Mass Spectrom 35:13–22PubMedGoogle Scholar
  5. Atkins CA, Emery RJN, Smith PMC (2011) Consequences of transforming narrow leafed lupin (Lupinus angustifolius L.) with an ipt gene under control of a flower-specific promotor. Transgenic Res 20:1321–1332PubMedGoogle Scholar
  6. Bartrina I, Otto E, Strnad M, Werner T, Schmülling T (2011) Cytokinin regulates the activity of reproductive meristems, flower organ size, ovule formation, and thus seed yield in Arabidopsis thaliana. Plant Cell 23:69–80PubMedCentralPubMedGoogle Scholar
  7. Bassil NV, Mok DWS, Mok MC (1993) Partial purification of a cis-trans-isomerase of zeatin from immature seed of Phaseolus vulgaris L. Plant Physiol 102:867–872PubMedCentralPubMedGoogle Scholar
  8. Beinsberger SEI, Valcke RLM, Deblaere RY, Clijsters HMM, Degreef JA, Vanonckelen HA (1991) Effects of the introduction of Agrobacterium tumefaciens T–DNA IPT gene in Nicotiana tabacum cv. Petit Havana SR1. Plant Cell Physiol 32:489–496Google Scholar
  9. Belintani NG, Guerzoni JTS, Moreira RMP, Vieira LGE (2012) Improving low-temperature tolerance in sugarcane by expressing the ipt gene under a cold inducible promotor. Biol Plant 56:71–77Google Scholar
  10. Bilyeu KD, Cole JL, Laskey JG, Riekhof WR, Esparza TJ, Kramer MD, Morris RO (2001) Molecular and biochemical characterization of a cytokinin oxidase from maize. Plant Physiol 125:378–386PubMedCentralPubMedGoogle Scholar
  11. Brenner WG, Schmülling T (2012) Transcript profiling of cytokinin action in Arabidopsis roots and shoots discovers largely similar but also organ–specific responses. BMC Plant Biol 12:112Google Scholar
  12. Brugiere N, Humbert S, Rizzo N, Bohn J, Habben JE (2008) A member of the maize isopentenyl transferase gene family, Zea mays isopentenyl transferase 2 (ZmIPT2), encodes a cytokinin biosynthetic enzyme expressed during kernel development. Plant Mol Biol 67:215–229PubMedGoogle Scholar
  13. Brzobohatý B, Moore I, Kristoffersen P, Bako L, Campos N, Schell J, Palme K (1993) Release of active cytokinin by a beta–glucosidase localized to the maize root meristem. Science 262:1051–1054PubMedGoogle Scholar
  14. Burch LR, Horgan R (1989) The purification of cytokinin oxidase from Zea mays kernels. Phytochemistry 28:1313–1319Google Scholar
  15. Burkle L, Cedzich A, Dopke C, Stransky H, Okumoto S, Gillissen B, Kuhn C, Frommer WB (2003) Transport of cytokinins mediated by purine transporters of the PUP family expressed in phloem, hydathodes, and pollen of Arabidopsis. Plant J 34:13–26PubMedGoogle Scholar
  16. Campos N, Bako L, Feldwisch J, Schell J, Palme K (1992) A protein from maize labeled with azido–IAA has novel beta-glucosidase activity. Plant J 2:675–684Google Scholar
  17. Choi J, Huh SU, Kojima M, Sakakibara H, Paek KH, Hwang I (2010) The cytokinin-activated transcription factor ARR2 promotes plant immunity via TGA3/NPR1-dependent salicylic acid signaling in Arabidopsis. Dev Cell 19:284–295PubMedGoogle Scholar
  18. Dortay H, Gruhn N, Pfeifer A, Schwerdtner M, Schmülling T, Heyl A (2008) Toward an interaction map of the two–component signaling pathway of Arabidopsis thaliana. J Proteome Res 7:3649–3660PubMedGoogle Scholar
  19. Esen A (1992) Purification and partial characterization of maize (Zea mays L.) beta-glucosidase. Plant Physiol 98:174–182PubMedCentralPubMedGoogle Scholar
  20. Esen A (1993) Tissue-specific expression of beta-glucosidase. Maize Genet Coop News Lett 67:19–20Google Scholar
  21. Esen A, Stetler DA (1993) Subcellular localization of maize b glucosidase. Maize Genet Coop News Lett 67:19–20Google Scholar
  22. Faiss M, Zalubilová J, Strnad M, Schmülling T (1997) Conditional transgenic expression of the ipt gene indicates a function for cytokinins in paracrine signaling in whole tobacco plants. Plant J 12:401–415PubMedGoogle Scholar
  23. Falk A, Rask L (1995) Expression of a zeatin-O-glucoside-degrading beta-glucosidase in Brassica napus. Plant Physiol 108:1369–1377PubMedCentralPubMedGoogle Scholar
  24. Frébort I, Kowalska M, Hluska T, Frébortova J, Galuszka P (2011) Evolution of cytokinin biosynthesis and degradation. J Exp Bot 62:2431–2452PubMedGoogle Scholar
  25. Gajdošová S, Spíchal L, Kamínek M, Hoyerová K, Novák O, Dobrev PI, Galuszka P, Klíma P, Gaudinová A, Žižková E, Hanuš J, Dančák M, Trávníček B, Pešek B, Krupická M, Vaňková R, Strnad M, Motyka V (2011) Distribution, biological activities, metabolism, and the conceivable function of cis-zeatin-type cytokinins in plants. J Exp Bot 62:2827–2840PubMedGoogle Scholar
  26. Galfe N, Berger AA, Riefler M, Siemens J (2009) Cytokinin is a crucial pathogenic factor for clubroot development in Arabidopsis thaliana. Plant Prot Sci 45:31Google Scholar
  27. Galichet A, Hoyerová K, Kaminek M, Gruissem W (2008) Farnesylation directs AtIPT3 subcellular localization and modulates cytokinin biosynthesis in Arabidopsis. Plant Physiol 146:1155–1164PubMedCentralPubMedGoogle Scholar
  28. Galuszka P, Frébortová J, Werner T, Yamada M, Strnad M, Schmülling T, Frébort I (2004) Cytokinin oxidase/dehydrogenase genes in barley and wheat – cloning and heterologous expression. Eur J Biochem 271:3990–4002PubMedGoogle Scholar
  29. Galuszka P, Frébortová J, Luhová L, Bilyeu KD, English JT, Frébort I (2005) Tissue localization of cytokinin dehydrogenase in maize: possible involvement of quinone species generated from plant phenolics by other enzymatic systems in the catalytic reaction. Plant Cell Physiol 46:716–728PubMedGoogle Scholar
  30. Galuszka P, Popelková H, Werner T, Frébortová J, Pospíšilová H, Mik V, Kollmer I, Schmülling T, Frébort I (2007) Biochemical characterization of cytokinin oxidases/dehydrogenases from Arabidopsis thaliana expressed in Nicotiana tabacum L. J Plant Growth Regul 26:255–267Google Scholar
  31. Gan SS, Amasino RM (1995) Inhibition of leaf senescence by autoregulated production of cytokinin. Science 270:1986–1988PubMedGoogle Scholar
  32. Gemrotová M, Kulkarni MG, Stirk WA, Strnad M, van Staden J, Spíchal L (2013) Seedlings of medicinal plants treated with either a cytokinin antagonist (PI-55) or an inhibitor of cytokinin degradation (INCYDE) are protected against the negative effects of cadmium. Plant Growth Regul 71:137–145Google Scholar
  33. Ghanem ME, Albacete A, Smigocki AC, Frébort I, Pospisilová H, Martinez-Andujar C, Acosta M, Sanchez-Bravo J, Lutts S, Dodd IC, Perez-Alfocea F (2011) Root-synthesized cytokinins improve shoot growth and fruit yield in salinized tomato (Solanum lycopersicum L.) plants. J Exp Bot 62:125–140PubMedGoogle Scholar
  34. Gillissen B, Burkle L, Andre B, Kuhn C, Rentsch D, Brandl B, Frommer WB (2000) A new family of high-affinity transporters for adenine, cytosine, and purine derivatives in Arabidopsis. Plant Cell 12:291–300PubMedCentralPubMedGoogle Scholar
  35. Gonzalez-Rizzo S, Crespi M, Frugier F (2006) The Medicago truncatula CRE1 cytokinin receptor regulates lateral root development and early symbiotic interaction with Sinorhizobium meliloti. Plant Cell 18:2680–2693PubMedCentralPubMedGoogle Scholar
  36. Guo YF, Gan SS (2011) AtMYB2 regulates whole plant senescence by inhibiting cytokinin–mediated branching at late stages of development in Arabidopsis. Plant Physiol 156:1612–1619PubMedCentralPubMedGoogle Scholar
  37. Hare PD, Vanstaden J (1994) Cytokinin oxidase – biochemical features and physiological significance. Physiol Plant 91:128–136Google Scholar
  38. Havlová M, Dobrev PI, Motyka V, Storchová H, Libus J, Dobrá J, Malbeck J, Gaudinová A, Vaňková R (2008) The role of cytokinins in responses to water deficit in tobacco plants over–expressing trans–zeatin O–glucosyltransferase gene under 35S or SAG12 promotors. Plant Cell Environ 31:341–353PubMedGoogle Scholar
  39. Hewelt A, Prinsen E, Schell J, van Onckelen H, Schmülling T (1994) Promotor tagging with a promotorless IPT gene leads to cytokinin-induced phenotypic variability in transgenic tobacco plants implications of gene dosage effects. Plant J 6:879–891PubMedGoogle Scholar
  40. Heyl A, Schmülling T (2003) Cytokinin signal perception and transduction. Curr Opin Plant Biol 6:480–488PubMedGoogle Scholar
  41. Heyl A, Ramireddy E, Brenner WG, Riefler M, Allemeersch J, Schmülling T (2008) The transcriptional repressor ARR1–SRDX suppresses pleiotropic cytokinin activities in Arabidopsis. Plant Physiol 147:1380–1395PubMedCentralPubMedGoogle Scholar
  42. Higuchi M, Pischke MS, Mähönen AP, Miyawaki K, Hashimoto Y, Seki M, Kobayashi M, Shinozaki K, Kato T, Tabata S, Helariutta Y, Sussman MR, Kakimoto T (2004) In planta functions of the Arabidopsis cytokinin receptor family. Proc Natl Acad Sci U S A 101:8821–8826PubMedCentralPubMedGoogle Scholar
  43. Hirose N, Takei K, Kuroha T, Kamada-Nobusada T, Hayashi H, Sakakibara H (2008) Regulation of cytokinin biosynthesis, compartmentalization and translocation. J Exp Bot 59:75–837PubMedGoogle Scholar
  44. Horák J, Grefen C, Berendzen KW, Hahn A, Stierhof YD, Stadelhofer B, Stahl M, Koncz C, Harter K (2008) The Arabidopsis thaliana response regulator ARR22 is a putative AHP phospho–histidine phosphatase expressed in the chalaza of developing seeds. BMC Plant Biol 8:77Google Scholar
  45. Hothorn M, Dabi T, Chory J (2011) Structural basis for cytokinin recognition by Arabidopsis thaliana histidine kinase 4. Nat Chem Biol 7:766–768PubMedCentralPubMedGoogle Scholar
  46. Hou BK, Lim EK, Higgins GS, Bowles DJ (2004) N-glucosylation of cytokinins by glycosyltransferases of Arabidopsis thaliana. J Biol Chem 279:47822–47832PubMedGoogle Scholar
  47. Houba-Herin N, Pethe C, d’Alayer J, Laloue M (1999) Cytokinin oxidase from Zea mays: purification, cDNA cloning and expression in moss protoplasts. Plant J 17:615–626PubMedGoogle Scholar
  48. Huang S, Cerny RE, Qi YL, Bhat D, Aydt CM, Hanson DD, Malloy KP, Ness LA (2003) Transgenic studies on the involvement of cytokinin and gibberellin in male development. Plant Physiol 131:1270–1282PubMedCentralPubMedGoogle Scholar
  49. Hutchison CE, Li J, Argueso C, Gonzalez M, Lee E, Lewis MW, Maxwell BB, Perdue TD, Schaller GE, Alonso JM, Ecker JR, Kieber JJ (2006) The Arabidopsis histidine phosphotransfer proteins are redundant positive regulators of cytokinin signaling. Plant Cell 18:3073–3087PubMedCentralPubMedGoogle Scholar
  50. Igarashi D, Izumi Y, Dokiya Y, Totsuka K, Fukusaki E, Ohsumi C (2009) Reproductive organs regulate leaf nitrogen metabolism mediated by cytokinin signal. Planta 229:633–644PubMedGoogle Scholar
  51. Imamura A, Hanaki N, Nakamura A, Suzuki T, Taniguchi M, Kiba T, Ueguchi C, Sugiyama T, Mizuno T (1999) Compilation and characterization of Arabidopsis thaliana response regulators implicated in His–Asp phosphorelay signal transduction. Plant Cell Physiol 40:733–742PubMedGoogle Scholar
  52. Inoue T, Higuchi M, Hashimoto Y, Seki M, Kobayashi M, Kato T, Tabata S, Shinozaki K, Kakimoto T (2001) Identification of CRE1 as a cytokinin receptor from Arabidopsis. Nature 409:1060–1063PubMedGoogle Scholar
  53. Ishida K, Yamashino T, Yokoyama A, Mizuno T (2008) Three type–B response regulators, ARR1, ARR10 and ARR12, play essential but redundant roles in cytokinin signal transduction throughout the life cycle of Arabidopsis thaliana. Plant Cell Physiol 49:47–57PubMedGoogle Scholar
  54. Iwamura H (1978) Synthesis and cytokinin agonistic and antagonistic activities of substituted pyrrolo 2,3-D pyrimidines – development of anti-cytokinins. Heterocycles 10:391–412Google Scholar
  55. Iwamura H, Masuda N, Koshimizu K, Matsubara S (1979) Cytokinin-agonistic and antagonistic activities of 4-substituted-2-methylpyrrolo 2,3-D pyrimidines, 7-deaza analogs of cytokinin-active adenine derivatives. Phytochemistry 18:217–222Google Scholar
  56. Jeon J, Kim NY, Kim S, Kang NY, Novák O, Ku SJ, Cho C, Lee DJ, Lee EJ, Strnad M, Kim J (2010) A subset of cytokinin two-component signaling system plays a role in cold temperature stress response in Arabidopsis. J Biol Chem 285:23369–23384Google Scholar
  57. Khodakovskaya M, Vaňková R, Malbeck J, Li AZ, Li Y, McAvoy R (2009) Enhancement of flowering and branching phenotype in chrysanthemum by expression of ipt under the control of a 0.821 kb fragment of the LEACO1 gene promotor. Plant Cell Rep 28:1351–1362PubMedGoogle Scholar
  58. Kieber JJ, Schaller GE (2010) The perception of cytokinin: a story 50 years in the making. Plant Physiol 154:487–492PubMedCentralPubMedGoogle Scholar
  59. Kim HJ, Ryu H, Hong SH, Woo HR, Lim PO, Lee IC, Sheen J, Nam HG, Hwang I (2006) Cytokinin–mediated control of leaf longevity by AHK3 through phosphorylation of ARR2 in Arabidopsis. Proc Natl Acad Sci U S A 103:814–819PubMedCentralPubMedGoogle Scholar
  60. Kiran NS, Polanská L, Fohlerová R, Mazura P, Valková M, Smeral M, Zouhar J, Malbeck J, Dobrev PI, Macháčková I, Brzobohatý B (2006) Ectopic over-expression of the maize beta-glucosidase Zm-p60.1 perturbs cytokinin homeostasis in transgenic tobacco. J Exp Bot 57:985–996PubMedGoogle Scholar
  61. Kiran NS, Benková E, Reková A, Dubová J, Malbeck J, Palme K, Brzobohatý B (2012) Retargeting a maize beta–glucosidase to the vacuole – evidence from intact plants that zeatin–O–glucoside is stored in the vacuole. Phytochemistry 79:67–77PubMedGoogle Scholar
  62. Kollmer I, Werner T, Schmülling T (2011) Ectopic expression of different cytokinin-regulated transcription factor genes of Arabidopsis thaliana alters plant growth and development. J Plant Physiol 168:1320–1327PubMedGoogle Scholar
  63. Kopečný D, Šebela M, Briozzo P, Spíchal L, Houba-Herin N, Mašek V, Joly N, Madzak C, Anzenbacher P, Laloue M (2008) Mechanism–based inhibitors of cytokinin oxidase/dehydrogenase attack FAD cofactor. J Mol Biol 380:886–899PubMedGoogle Scholar
  64. Kopečný D, Briozzo P, Popelková H, Šebela M, Končitiková R, Spíchal L, Nisler J, Madzak C, Frébort I, Laloue M, Houba-Herin N (2010) Phenyl- and benzylurea cytokinins as competitive inhibitors of cytokinin oxidase/dehydrogenase: a structural study. Biochimie 92:1052–1062PubMedGoogle Scholar
  65. Kristoffersen P, Brzobohatý B, Hohfeld I, Bako L, Melkonian M, Palme K (2000) Developmental regulation of the maize Zm-g60.1 gene encoding a beta-glucosidase located to plastids. Planta 210:407–415PubMedGoogle Scholar
  66. Krivosheev DM, Kolyachkina SV, Mikhailov SN, Tararov VI, Vanyushin BF, Romanov GA (2012) N-6-(Benzyloxymethyl)adenosine is a novel anticytokinin, an antagonist of cytokinin receptor CRE1/AHK4 of Arabidopsis. Dokl Biochem Biophys 444:178–181PubMedGoogle Scholar
  67. Kudo T, Kiba T, Sakakibara H (2010) Metabolism and long-distance translocation of cytokinins. J Integr Plant Biol 52:53–60PubMedGoogle Scholar
  68. Kudo T, Makita N, Kojima M, Tokunaga H, Sakakibara H (2012) Cytokinin activity of cis-zeatin and phenotypic alterations induced by overexpression of putative cis-zeatin-O-glucosyltransferase in rice. Plant Physiol 160:319–331PubMedCentralPubMedGoogle Scholar
  69. Kumari S, van der Hoorn RAL (2011) A structural biology perspective on bioactive small molecules and their plant targets. Curr Opin Plant Biol 14:480–488PubMedGoogle Scholar
  70. Kurakawa T, Ueda N, Maekawa M, Kobayashi K, Kojima M, Nagato Y, Sakakibara H, Kyozuka J (2007) Direct control of shoot meristem activity by a cytokinin-activating enzyme. Nature 445:652–655PubMedGoogle Scholar
  71. Kuroha T, Tokunaga H, Kojima M, Ueda N, Ishida T, Nagawa S, Fukuda H, Sugimoto K, Sakakibara H (2009) Functional analyses of LONELY GUY cytokinin-activating enzymes reveal the importance of the direct activation pathway in Arabidopsis. Plant Cell 21:3152–3169PubMedCentralPubMedGoogle Scholar
  72. Laloue M, Fox JE (1989) Cytokinin oxidase from wheat – partial purification and general properties. Plant Physiol 90:899–906PubMedCentralPubMedGoogle Scholar
  73. Lara MEB, Garcia MCG, Fatima T, Ehness R, Lee TK, Proels R, Tanner W, Roitsch T (2004) Extracellular invertase is an essential component of cytokinin–mediated delay of senescence. Plant Cell 16:1276–1287Google Scholar
  74. Li Y, Shi XY, Strabala TJ, Hagen G, Guilfoyle TJ (1994) Transgenic tobacco plants that overproduce cytokinin show increased tolerance to exogenous auxin and auxin transport inhibitors. Plant Sci 100:9–14Google Scholar
  75. Li Q, Robson PRH, Bettany AJE, Donnison IS, Thomas H, Scott IM (2004) Modification of senescence in ryegrass transformed with IPT under the control of a monocot senescence-enhanced promotor. Plant Cell Rep 22:816–821PubMedGoogle Scholar
  76. Li XG, Su YH, Zhao XY, Li W, Gao XQ, Zhang XS (2010) Cytokinin overproduction-caused alteration of flower development is partially mediated by CUC2 and CUC3 in Arabidopsis. Gene 450:109–120PubMedGoogle Scholar
  77. Liu L, Zhou Y, Szczerba MW, Li XH, Lin YJ (2010) Identification and application of a rice senescence-associated promotor. Plant Physiol 153:1239–1249PubMedCentralPubMedGoogle Scholar
  78. Liu YD, Yin ZJ, Yu JW, Li J, Wei HL, Han XL, Shen FF (2012) Improved salt tolerance and delayed leaf senescence in transgenic cotton expressing the Agrobacterium IPT gene. Biol Plant 56:237–246Google Scholar
  79. Ma QH, Liu YC (2009) Expression of isopentenyl transferase gene (ipt) in leaf and stem delayed leaf senescence without affecting root growth. Plant Cell Rep 28:1759–1765PubMedGoogle Scholar
  80. Ma QH, Lin ZB, Fu DZ (2002) Increased seed cytokinin levels in transgenic tobacco influence embryo and seedling development. Funct Plant Biol 29:1107–1113Google Scholar
  81. Ma QH, Wang XM, Wang ZM (2008) Expression of isopentenyl transferase gene controlled by seed-specific lectin promotor in transgenic tobacco influences seed development. J Plant Growth Regul 27:68–76Google Scholar
  82. Macková H, Hronková M, Dobrá J, Turečková V, Novák O, Lubovská Z, Motyka V, Haisel D, Hájek T, Prášil IT, Gaudinová A, Štorchová H, Ge E, Werner T, Schmülling T, Vaňková R (2013) Enhanced drought and heat stress tolerance of tobacco plants with ectopically enhanced cytokinin oxidase/dehydrogenase gene expression. J Exp Bot 64:2805–2815PubMedGoogle Scholar
  83. Mao ZC, Yu QJ, Zhen W, Guo JY, Hu YL, Gao Y, Lin ZP (2002) Expression of ipt gene driven by tomato fruit specific promotor and its effects on fruit development of tomato. Chin Sci Bull 47:928–933Google Scholar
  84. Martin RC, Mok MC, Shaw G, Mok DWS (1989) An enzyme mediating the conversion of zeatin to dihydrozeatin in Phaseolus embryos. Plant Physiol 90:1630–1635PubMedCentralPubMedGoogle Scholar
  85. Martin RC, Mok MC, Mok DWS (1999) Isolation of a cytokinin gene, ZOG1, encoding zeatin O-glucosyltransferase from Phaseolus lunatus. Proc Natl Acad Sci U S A 96:284–289PubMedCentralPubMedGoogle Scholar
  86. Martin RC, Mok DWS, Smets R, Van Onckelen HA, Mok MC (2001a) Development of transgenic tobacco harboring a zeatin O-glucosyltransferase gene from Phaseolus. In Vitro Cell Dev Biol Plant 37:354–360Google Scholar
  87. Martin RC, Mok MC, Habben JE, Mok DWS (2001b) A maize cytokinin gene encoding an O-glucosyltransferase specific to cis-zeatin. Proc Natl Acad Sci U S A 98:5922–5926PubMedCentralPubMedGoogle Scholar
  88. Martineau B, Houck CM, Sheehy RE, Hiatt WR (1994) Fruit-specific expression of the A. tumefaciens isopentenyl transferase gene in tomato – effects on fruit ripening and defense-related gene expression in leaves. Plant J 5:11–19Google Scholar
  89. Mason MG, Mathews DE, Argyros DA, Maxwell BB, Kieber JJ, Alonso JM, Ecker JR, Schaller GE (2005) Multiple type-B response regulators mediate cytokinin signal transduction in Arabidopsis. Plant Cell 17:3007–3018PubMedCentralPubMedGoogle Scholar
  90. Massonneau A, Houba-Herin N, Pethe C, Madzak C, Falque M, Mercy M, Kopečný D, Majira A, Rogowsky P, Laloue M (2004) Maize cytokinin oxidase genes: differential expression and cloning of two new cDNAs. J Exp Bot 55:2549–2557PubMedGoogle Scholar
  91. Matsumoto-Kitano M, Kusumoto T, Tarkowski P, Kinoshita-Tsujimura K, Václaviková K, Miyawaki K, Kakimoto T (2008) Cytokinins are central regulators of cambial activity. Proc Natl Acad Sci U S A 105:20027–20031PubMedCentralPubMedGoogle Scholar
  92. McCabe MS, Garratt LC, Schepers F, Jordi W, Stoopen GM, Davelaar E, van Rhijn JHA, Power JB, Davey MR (2001) Effects of PSAG12 -IPT gene expression on development and senescence in transgenic lettuce. Plant Physiol 127:505–516PubMedCentralPubMedGoogle Scholar
  93. Meek L, Martin RC, Shan X, Karplus PA, Mok DWS, Mok MC (2008) Isolation of legume glycosyltransferases and active site mapping of the Phaseolus lunatus zeatin O-glucosyltransferase ZOG1. J Plant Growth Regul 27:192–201Google Scholar
  94. Merewitz EB, Gianfagna T, Huang BR (2010) Effects of SAG12-ipt and HSP18.2-ipt expression on cytokinin production, root growth, and leaf senescence in creeping bentgrass exposed to drought stress. J Am Soc Hortic Sci 135:230–239Google Scholar
  95. Merewitz EB, Gianfagna T, Huang BR (2011) Protein accumulation in leaves and roots associated with improved drought tolerance in creeping bentgrass expressing an ipt gene for cytokinin synthesis. J Exp Bot 62:5311–5333PubMedGoogle Scholar
  96. Merewitz EB, Du HM, Yu WJ, Liu YM, Gianfagna T, Huang BR (2012) Elevated cytokinin content in ipt transgenic creeping bentgrass promotes drought tolerance through regulating metabolite accumulation. J Exp Bot 63:1315–1328PubMedGoogle Scholar
  97. Miller CO, Skoog F, Vonsaltza MH, Strong FM (1955) Kinetin, a cell division factor from deoxyribonucleic acid. J Am Chem Soc 77:1392–1392Google Scholar
  98. Miller CO, Skoog F, Okumura FS, Vonsaltza MH, Strong FM (1956) Isolation, structure and synthesis of kinetin, a substance promoting cell division. J Am Chem Soc 78:1375–1380Google Scholar
  99. Miyawaki K, Matsumoto-Kitano M, Kakimoto T (2004) Expression of cytokinin biosynthetic isopentenyltransferase genes in Arabidopsis: tissue specificity and regulation by auxin, cytokinin, and nitrate. Plant J 37:128–138PubMedGoogle Scholar
  100. Miyawaki K, Tarkowski P, Matsumoto-Kitano M, Kato T, Sato S, Tarkowska D, Tabata S, Sandberg G, Kakimoto T (2006) Roles of Arabidopsis ATP/ADP isopentenyltransferases and tRNA isopentenyltransferases in cytokinin biosynthesis. Proc Natl Acad Sci U S A 103:16598–16603PubMedCentralPubMedGoogle Scholar
  101. Mizuno T (2004) Plant response regulators implicated in signal transduction and circadian rhythm. Curr Opin Plant Biol 7:499–505PubMedGoogle Scholar
  102. Mok MC (1994) Cytokinins and plant development – an overview. In: Mok DWS, Mok MC (eds) Cytokinins. Chemistry, activity and function. CRC Press, Boca RatonGoogle Scholar
  103. Mok DWS, Martin RC, Shan X, Mok MC (2000) Genes encoding zeatin O-glycosyltransferases. Plant Growth Regul 32:285–287Google Scholar
  104. Mok MC, Martin RC, Dobrev PI, Vankova R, Ho PS, Yonekura-Sakakibara K, Sakakibara H, Mok DWS (2005) Topolins and hydroxylated are substrates of cytokinin thidiazuron derivatives O-glucosyltransferase with position specificity related to receptor recognition. Plant Physiol 137:1057–1066PubMedCentralPubMedGoogle Scholar
  105. Morris RO, Bilyeu KD, Laskey JG, Cheikh NN (1999) Isolation of a gene encoding a glycosylated cytokinin oxidase from maize. Biochem Biophys Res Commun 255:328–333PubMedGoogle Scholar
  106. Mrízová K, Jiskrová E, Vyroubalová Š, Novák O, Ohnoutková L, Pospíšilová H, Frébort I, Harwood WA, Galuszka P (2013) Overexpression of cytokinin dehydrogenase genes in barley (Hordeum vulgare cv. Golden Promise) fundamentally affects morphology and fertility. PLoS One, acceptedGoogle Scholar
  107. Muraro D, Wilson M, Bennett MJ (2011) Root development: cytokinin transport matters, too! Curr Biol 21:R423–R425PubMedGoogle Scholar
  108. Murray JD, Karas BJ, Sato S, Tabata S, Amyot L, Szczyglowski K (2007) A cytokinin perception mutant colonized by Rhizobium in the absence of nodule organogenesis. Science 315:101–104PubMedGoogle Scholar
  109. Mytinová Z, Motyka V, Haisel D, Lubovská Z, Trávníčková A, Dobrev P, Holík J, Wilhelmová N (2011) Antioxidant enzymatic protection during tobacco leaf ageing is affected by cytokinin depletion. Plant Growth Regul 65:23–34Google Scholar
  110. Nikus J, Jonsson LMV (1999) Tissue localization of beta-glucosidase in rye, maize and wheat seedlings. Physiol Plant 107:373–378Google Scholar
  111. Nishimura C, Ohashi Y, Sato S, Kato T, Tabata S, Ueguchi C (2004) Histidine kinase homologs that act as cytokinin receptors possess overlapping functions in the regulation of shoot and root growth in Arabidopsis. Plant Cell 16:1365–1377PubMedCentralPubMedGoogle Scholar
  112. Nishiyama R, Watanabe Y, Fujita Y, Le DT, Kojima M, Werner T, Vaňková R, Yamaguchi-Shinozaki K, Shinozaki K, Kakimoto T, Sakakibara H, Schmülling T, Tran LSP (2011) Analysis of cytokinin mutants and regulation of cytokinin metabolic genes reveals important regulatory roles of cytokinins in drought, salt and abscisic acid responses, and abscisic acid biosynthesis. Plant Cell 23:2169–2183PubMedCentralPubMedGoogle Scholar
  113. Nishiyama R, Le DT, Watanabe Y, Matsui A, Tanaka M, Seki M, Yamaguchi–Shinozaki K, Shinozaki K, Tran LSP (2012) Transcriptome analyses of a salt-tolerant cytokinin-deficient mutant reveal differential regulation of salt stress response by cytokinin deficiency. PLoS One 7:e32124Google Scholar
  114. Nisler J, Zatloukal M, Popa I, Doležal K, Strnad M, Spíchal L (2010) Cytokinin receptor antagonists derived from 6-benzylaminopurine. Phytochemistry 71:823–830PubMedGoogle Scholar
  115. Pasquali G, Orbovic V, Grosser J (2009) Transgenic grapefruit plants expressing the P-APETALA3-IPT (gp) gene exhibit altered expression of PR genes. Plant Cell Tissue Organ Cult 97:215–223Google Scholar
  116. Peleg Z, Blumwald E (2011) Hormone balance and abiotic stress tolerance in crop plants. Curr Opin Plant Biol 14:290–295PubMedGoogle Scholar
  117. Peleg Z, Reguera M, Tumimbang E, Walia H, Blumwald E (2011) Cytokinin-mediated source/sink modifications improve drought tolerance and increase grain yield in rice under water-stress. Plant Biotechnol J 9:747–758PubMedGoogle Scholar
  118. Pertry I, Václavíková K, Gemrotová M, Spíchal L, Galuszka P, Depuydt S, Temmerman W, Stes E, De Keyser A, Riefler M, Biondi S, Novák O, Schmülling T, Strnad M, Tarkowski P, Holsters M, Vereecke D (2010) Rhodococcus fascians impacts plant development through the dynamic fas–mediated production of a cytokinin mix. Mol Plant Microbe Interact 23:1164–1174PubMedGoogle Scholar
  119. Polanska L, Vicanková A, Nováková M, Malbeck J, Dobrev PI, Brzobohatý B, Vaňková R, Macháčková I (2007) Altered cytokinin metabolism affects cytokinin, auxin, and abscisic acid contents in leaves and chloroplasts, and chloroplast ultrastructure in transgenic tobacco. J Exp Bot 58:637–649PubMedGoogle Scholar
  120. Qin H, Gu Q, Zhang JL, Sun L, Kuppu S, Zhang YZ, Burow M, Payton P, Blumwald E, Zhang H (2011) Regulated expression of an isopentenyltransferase gene (IPT) in peanut significantly improves drought tolerance and increases yield under field conditions. Plant Cell Physiol 52:1904–1914PubMedGoogle Scholar
  121. Qiu WM, Liu MY, Qiao GR, Jiang J, Xie LH, Zhuo RY (2012) An isopentyl transferase gene driven by the stress–inducible rd29A promotor improves salinity stress tolerance in transgenic tobacco. Plant Mol Biol Rep 30:519–528Google Scholar
  122. Rashotte AM, Goertzen LR (2010) The CRF domain defines cytokinin response factor proteins in plants. BMC Plant Biol 10:74Google Scholar
  123. Rashotte AM, Mason MG, Hutchison CE, Ferreira FJ, Schaller GE, Kieber JJ (2006) A subset of Arabidopsis AP2 transcription factors mediates cytokinin responses in concert with a two-component pathway. Proc Natl Acad Sci U S A 103:11081–11085PubMedCentralPubMedGoogle Scholar
  124. Redig P, Schmülling T, van Onckelen H (1996) Analysis of cytokinin metabolism in ipt transgenic tobacco by liquid chromatography tandem mass spectrometry. Plant Physiol 112:141–148PubMedCentralPubMedGoogle Scholar
  125. Ren C, Bilyeu KD, Beuselinck PR (2009) Composition, vigor, and proteome of mature soybean seeds developed under high temperature. Crop Sci 49:1010–1022Google Scholar
  126. Reusche M, Klasková J, Thole K, Truskina J, Novák O, Janz D, Strnad M, Spíchal L, Lipka V, Teichmann T (2013) Stabilization of cytokinin levels enhances Arabidopsis resistance against Verticillium longisporum. Mol Plant Microbe Interact 26:850–860PubMedGoogle Scholar
  127. Riefler M, Novák O, Strnad M, Schmülling T (2006) Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism. Plant Cell 18:40–54PubMedCentralPubMedGoogle Scholar
  128. Rivero RM, Kojima M, Gepstein A, Sakakibara H, Mittler R, Gepstein S, Blumwald E (2007) Delayed leaf senescence induces extreme drought tolerance in a flowering plant. Proc Natl Acad Sci U S A 104:19631–19636PubMedCentralPubMedGoogle Scholar
  129. Rivero RM, Gimeno J, Van Deynze A, Walia H, Blumwald E (2010) Enhanced cytokinin synthesis in tobacco plants expressing PSARK::IPT prevents the degradation of photosynthetic protein complexes during drought. Plant Cell Physiol 51:1929–1941PubMedGoogle Scholar
  130. Robson PRH, Donnison IS, Wang K, Frame B, Pegg SE, Thomas A, Thomas H (2004) Leaf senescence is delayed in maize expressing the Agrobacterium IPT gene under the control of a novel maize senescence-enhanced promotor. Plant Biotechnol J 2:101–112PubMedGoogle Scholar
  131. Rodo AP, Brugiere N, Vaňková R, Malbeck J, Olson JM, Haines SC, Martin RC, Habben JE, Mok DWS, Mok MC (2008) Over-expression of a zeatin O-glucosylation gene in maize leads to growth retardation and tasselseed formation. J Exp Bot 59:2673–2686Google Scholar
  132. Roeckel P, Oancia T, Drevet J (1997) Effects of seed-specific expression of a cytokinin biosynthetic gene on canola and tobacco phenotypes. Transgenic Res 6:133–141PubMedGoogle Scholar
  133. Sa G, Mi M, He-Chun Y, Guo-Feng L (2002) Anther-specific expression of ipt gene in transgenic tobacco and its effect on plant development. Transgenic Res 11:269–278PubMedGoogle Scholar
  134. Sasaki E, Ogura T, Takei K, Kojima M, Kitahata N, Sakakibara H, Asami T, Shimada Y (2013) Uniconazole, a cytochrome P450 inhibitor, inhibits trans-zeatin biosynthesis in Arabidopsis. Phytochemistry 87:30–38PubMedGoogle Scholar
  135. Shi XL, Gupta S, Rashotte AM (2012) Solanum lycopersicum cytokinin response factor (SlCRF) genes: characterization of CRF domain-containing ERF genes in tomato. J Exp Bot 63:973–982PubMedGoogle Scholar
  136. Siemens J, Keller I, Sarx J, Kunz S, Schuller A, Nagel W, Schmulling T, Parniske M, Ludwig-Müller J (2006) Transcriptome analysis of Arabidopsis clubroots indicate a key role for cytokinins in disease development. Mol Plant Microbe Interact 19:480–494PubMedGoogle Scholar
  137. Smart CM, Scofield SR, Bevan MW, Dyer TA (1991) Delayed leaf senescence in tobacco plants transformed with TMR, a gene for cytokinin production in Agrobacterium. Plant Cell 3:647–656PubMedCentralPubMedGoogle Scholar
  138. Šmehilová M, Galuszka P, Bilyeu KD, Jaworek P, Kowalska M, Šebela M, Sedlářová M, English JT, Frébort I (2009) Subcellular localization and biochemical comparison of cytosolic and secreted cytokinin dehydrogenase enzymes from maize. J Exp Bot 60:2701–2712PubMedGoogle Scholar
  139. Smith AR, Vanstaden J (1978) Changes in endogenous cytokinin levels of Zea mays during imbibition and germination. J Exp Bot 29:1067–1075Google Scholar
  140. Spíchal L (2012) Cytokinins – recent news and views of evolutionally old molecules. Funct Plant Biol 39:267–284Google Scholar
  141. Spíchal L, Rakova NY, Riefler M, Mizuno T, Romanov GA, Strnad M, Schmülling T (2004) Two cytokinin receptors of Arabidopsis thaliana, CRE1/AHK4 and AHK3, differ in their ligand specificity in a bacterial assay. Plant Cell Physiol 45:1299–1305PubMedGoogle Scholar
  142. Spíchal L, Kryštof V, Paprskářová M, Lenobel R, Stýskala J, Binarová P, Cenklová V, De Veylder L, Inze D, Kontopidis G, Fischer PM, Schmülling T, Strnad M (2007) Classical anticytokinins do not interact with cytokinin receptors but inhibit cyclin-dependent kinases. J Biol Chem 282:14356–14363PubMedGoogle Scholar
  143. Spíchal L, Werner T, Popa I, Riefler M, Schmülling T, Strnad M (2009) The purine derivative PI-55 blocks cytokinin action via receptor inhibition. FEBS J 276:244–253PubMedGoogle Scholar
  144. Sugawara H, Ueda N, Kojima M, Makita N, Yamaya T, Sakakibara H (2008) Structural insight into the reaction mechanism and evolution of cytokinin biosynthesis. Proc Natl Acad Sci U S A 105:2734–2739PubMedCentralPubMedGoogle Scholar
  145. Sun JP, Hirose N, Wang XC, Wen P, Xue L, Sakakibara H, Zuo JR (2005) Arabidopsis SOI33/AtENT8 gene encodes a putative equilibrative nucleoside transporter that is involved in cytokinin transport in planta. J Integr Plant Biol 47:588–603Google Scholar
  146. Suttle JC, Mornet R (2005) Mechanism–based irreversible inhibitors of cytokinin dehydrogenase. J Plant Physiol 162:1189–1196PubMedGoogle Scholar
  147. Suzuki T, Miwa K, Ishikawa K, Yamada H, Aiba H, Mizuno T (2001) The Arabidopsis sensor His-kinase, AHK4, can respond to cytokinins. Plant Cell Physiol 42:107–113PubMedGoogle Scholar
  148. Swartzberg D, Dai N, Gan S, Amasino R, Granot D (2006) Effects of cytokinin production under two SAG promotors on senescence and development of tomato plants. Plant Biol 8:579–586PubMedGoogle Scholar
  149. Swartzberg D, Hanael R, Granot D (2011) Relationship between hexokinase and cytokinin in the regulation of leaf senescence and seed germination. Plant Biol 13:439–444PubMedGoogle Scholar
  150. Sykorová B, Kuresová G, Daskalová S, Trcková M, Hoyerová K, Raimanová I, Motyka V, Travnicková A, Elliott MC, Kaminek M (2008) Senescence–induced ectopic expression of the A. tumefaciens ipt gene in wheat delays leaf senescence, increases cytokinin content, nitrate influx, and nitrate reductase activity, but does not affect grain yield. J Exp Bot 59:377–387PubMedGoogle Scholar
  151. Takei K, Yamaya T, Sakakibara H (2004) Arabidopsis CYP735A1 and CYP735A2 encode cytokinin hydroxylases that catalyze the biosynthesis of trans-zeatin. J Biol Chem 279:41866–41872PubMedGoogle Scholar
  152. Taniguchi M, Sasaki N, Tsuge T, Aoyama T, Oka A (2007) ARR1 directly activates cytokinin response genes that encode proteins with diverse regulatory functions. Plant Cell Physiol 48:263–277PubMedGoogle Scholar
  153. Tirichine L, Sandal N, Madsen LH, Radutoiu S, Albrektsen AS, Sato S, Asamizu E, Tabata S, Stougaard J (2007) A gain–of–function mutation in a cytokinin receptor triggers spontaneous root nodule organogenesis. Science 315:104–107PubMedGoogle Scholar
  154. To JPC, Haberer G, Ferreira FJ, Deruere J, Mason MG, Schaller GE, Alonso JM, Ecker JR, Kieber JJ (2004) Type-A Arabidopsis response regulators are partially redundant negative regulators of cytokinin signaling. Plant Cell 16:658–671PubMedCentralPubMedGoogle Scholar
  155. To JPC, Deruere J, Maxwell BB, Morris VF, Hutchison CE, Ferreira FJ, Schaller GE, Kieber JJ (2007) Cytokinin regulates type–A Arabidopsis response regulator activity and protein stability via two-component phosphorelay. Plant Cell 19:3901–3914PubMedCentralPubMedGoogle Scholar
  156. Tokunaga H, Kojima M, Kuroha T, Ishida T, Sugimoto K, Kiba T, Sakakibara H (2012) Arabidopsis lonely guy (LOG) multiple mutants reveal a central role of the LOG-dependent pathway in cytokinin activation. Plant J 69:355–365PubMedGoogle Scholar
  157. Tran LSP, Urao T, Qin F, Maruyama K, Kakimoto T, Shinozaki K, Yamaguchi-Shinozaki K (2007) Functional analysis of AHK1/ATHK1 and cytokinin receptor histidine kinases in response to abscisic acid, drought, and salt stress in Arabidopsis. Proc Natl Acad Sci U S A 104:20623–20628PubMedCentralPubMedGoogle Scholar
  158. Ueguchi C, Sato S, Kato T, Tabata S (2001) The AHK4 gene involved in the cytokinin-signaling pathway as a direct receptor molecule in Arabidopsis thaliana. Plant Cell Physiol 42:751–755PubMedGoogle Scholar
  159. Veach YK, Martin RC, Mok DWS, Malbeck J, Vaňková R, Mok MC (2003) O-glucosylation of cis–zeatin in maize. Characterization of genes, enzymes, and endogenous cytokinins. Plant Physiol 131:1374–1380PubMedCentralPubMedGoogle Scholar
  160. Wang J, Ma XM, Kojima M, Sakakibara H, Hou BK (2011) N-Glucosyltransferase UGT76C2 is involved in cytokinin homeostasis and cytokinin response in Arabidopsis thaliana. Plant Cell Physiol 52:2200–2213PubMedGoogle Scholar
  161. Werner T, Schmülling T (2009) Cytokinin action in plant development. Curr Opin Plant Biol 12:527–538PubMedGoogle Scholar
  162. Werner T, Motyka V, Strnad M, Schmülling T (2001) Regulation of plant growth by cytokinin. Proc Natl Acad Sci U S A 98:10487–10492PubMedCentralPubMedGoogle Scholar
  163. Werner T, Motyka V, Laucou V, Smets R, Van Onckelen H, Schmülling T (2003) Cytokinin–deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell 15:2532–2550PubMedCentralPubMedGoogle Scholar
  164. Werner T, Nehnevajová E, Kollmer I, Novák O, Strnad M, Kramer U, Schmülling T (2010) Root–specific reduction of cytokinin causes enhanced root growth, drought tolerance, and leaf mineral enrichment in Arabidopsis and tobacco. Plant Cell 22:3905–3920PubMedCentralPubMedGoogle Scholar
  165. Wilkinson S, Kudoyarová GR, Veselov DS, Arkhipova TN, Davies WJ (2012) Plant hormone interactions: innovative targets for crop breeding and management. J Exp Bot 63:3499–3509PubMedGoogle Scholar
  166. Yamada H, Suzuki T, Terada K, Takei K, Ishikawa K, Miwa K, Yamashino T, Mizuno T (2001) The Arabidopsis AHK4 histidine kinase is a cytokinin-binding receptor that transduces cytokinin signals across the membrane. Plant Cell Physiol 42:1017–1023PubMedGoogle Scholar
  167. Yang SH, Yu H, Xu YF, Goh CJ (2003) Investigation of cytokinin-deficient phenotypes in Arabidopsis by ectopic expression of orchid DSCKX1. FEBS Lett 555:291–296PubMedGoogle Scholar
  168. Yokoyama A, Yamashino T, Amano YI, Tajima Y, Imamura A, Sakakibara H, Mizuno T (2007) Type–B ARR transcription factors, ARR10 and ARR12, are implicated in cytokinin-mediated regulation of protoxylem differentiation in roots of Arabidopsis thaliana. Plant Cell Physiol 48:84–96PubMedGoogle Scholar
  169. Young TE, Giesler-Lee J, Gallie DR (2004) Senescence–induced expression of cytokinin reverses pistil abortion during maize flower development. Plant J 38:910–922PubMedGoogle Scholar
  170. Zalabák D, Pospíšilová H, Šmehilová M, Mrízová K, Frébort I, Galuszka P (2013) Genetic engineering of cytokinin metabolism: prospective way to improve agricultural traits of crop plants. Biotechnol Adv 31:97–117PubMedGoogle Scholar
  171. Zalewski W, Galuszka P, Gasparis S, Orczyk W, Nadolska-Orczyk A (2010) Silencing of the HvCKX1 gene decreases the cytokinin oxidase/dehydrogenase level in barley and leads to higher plant productivity. J Exp Bot 61:1839–1851PubMedGoogle Scholar
  172. Zatloukal M, Gemrotová M, Doležal K, Havlíček L, Spíchal L, Strnad M (2008) Novel potent inhibitors of A. thaliana cytokinin oxidase/dehydrogenase. Bioorg Med Chem 16:9268–9275PubMedGoogle Scholar
  173. Zeng QW, Qin S, Song SQ, Zhang M, Xiao YH, Luo M, Hou L, Pei Y (2012) Molecular cloning and characterization of a cytokinin dehydrogenase gene from upland cotton (Gossypium hirsutum L.). Plant Mol Biol Rep 30:1–9Google Scholar
  174. Zhang R, Zhang X, Wang J, Letham DS, McKinney SA, Higgins TJV (1995) The effects of auxin on cytokinin levels and metabolism in transgenic tobacco tissue expressing an IPT gene. Planta 196:84–94Google Scholar
  175. Zhang JP, Liu WH, Yang XM, Gao AN, Li XQ, Wu XY, Li LH (2011) Isolation and characterization of two putative cytokinin oxidase genes related to grain number per spike phenotype in wheat. Mol Biol Rep 38:2337–2347PubMedGoogle Scholar
  176. Zubko E, Adams CJ, Macháčková I, Malbeck J, Scollan C, Meyer P (2002) Activation tagging identifies a gene from Petunia hybrida responsible for the production of active cytokinins in plants. Plant J 29:797–808PubMedGoogle Scholar
  177. Zubko E, Macháčkova I, Malbeck J, Meyer P (2005) Modification of cytokinin levels in potato via expression of the Petunia hybrida Sho gene. Transgenic Res 14:615–618PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of SciencePalacký UniversityOlomoucCzech Republic

Personalised recommendations