Advertisement

Understanding Temporal Intent of User Query Based on Time-Based Query Classification

  • Pengjie Ren
  • Zhumin Chen
  • Xiaomeng Song
  • Bin Li
  • Haopeng Yang
  • Jun Ma
Part of the Communications in Computer and Information Science book series (CCIS, volume 400)

Abstract

Web queries are time sensitive which implies that user’s intent for information changes over time. How to recognize temporal intents behind user queries is crucial towards improving the performance of search engines. However, to the best of our knowledge, this problem has not been studied in existing work. In this paper, we propose a time-based query classification approach to understand user’s temporal intent automatically. We first analyzed the shared features of queries’ temporal intent distributions. Then, we present a query taxonomy which group queries according to their temporal intents. Finally, for a new given query, we propose a machine learning method to decide its class in terms of its search frequency over time recorded in Web query logs. Experiments demonstrate that our approach can understand users’ temporal intents effectively.

Keywords

Temporal Intent Query Classification Machine Learning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zhou, K., Whiting, S., Jose, J.M., Lalmas, M.: The impact of temporal intent variability on diversity evaluation. In: Serdyukov, P., Braslavski, P., Kuznetsov, S.O., Kamps, J., Rüger, S., Agichtein, E., Segalovich, I., Yilmaz, E. (eds.) ECIR 2013. LNCS, vol. 7814, pp. 820–823. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  2. 2.
    Shokouhi, M.: Detecting seasonal queries by time-series analysis. In: Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2011, pp. 1171–1172. ACM. R, New York (2011)Google Scholar
  3. 3.
    Johansson, F., Färdig, T., Jethava, V., Marinov, S.: Intent-aware temporal query modeling for keyword suggestion. In: Proceedings of the 5th Ph.D. Workshop on Information and Knowledge, PIKM 2012, pp. 83–86. ACM, New York (2012)Google Scholar
  4. 4.
    Zhang, W., Yan, J., Yan, S., Liu, N., Chen, Z.: Temporal query substitution for ad search. In: SIGIR 2009, pp. 798–799 (2009)Google Scholar
  5. 5.
    Jones, R., Diaz, F.: Temporal profiles of queries. ACM Transactions on Information Systems 25(3), 14 (2007)CrossRefGoogle Scholar
  6. 6.
    Metzler, D., Jones, R., Peng, F., Zhang, R.: Improving search relevance for implicitly temporal queries. In: SIGIR 2009, pp. 700–701 (2009)Google Scholar
  7. 7.
    Asur, S., Buehrer, G.: Temporal analysis of web search query-click data. In: SNA-KDD 2009, pp. 1–8. ACM (2009)Google Scholar
  8. 8.
    Chien, S., Immorlica, N.: Semantic similarity between search engine queries using temporal correlation. In: WWW 2005, pp. 2–11. ACM (2005)Google Scholar
  9. 9.
    Nunes, S., Ribeiro, C., David, G.: Use of Temporal Expressions in Web Search. In: Macdonald, C., Ounis, I., Plachouras, V., Ruthven, I., White, R.W. (eds.) ECIR 2008. LNCS, vol. 4956, pp. 580–584. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Dakka, W., Gravano, L., Ipeirotis, P.G.: Answering general time sensitive queries. In: CIKM 2008, pp. 1437–1438. ACM (2008)Google Scholar
  11. 11.
    Radinsky, K., Agichtein, E., Gabrilovich, E., Markovitch, S.: A word at a time: computing word relatedness using temporal semantic analysis. In: Proceedings of the 20th International Conference on World Wide Web, WWW 2011, pp. 337–346. ACM, New York (2011)Google Scholar
  12. 12.
    Amodeo, G., Amati, G., Gambosi, G.: On relevance, time and query expansion. In: Proceedings of the 20th ACM International Conference on Information and Knowledge Management, CIKM 2011, pp. 1973–1976. ACM, New York (2011)Google Scholar
  13. 13.
    Radinsky, K., Svore, K., Dumais, S., Teevan, J., Bocharov, A., Horvitz, E.: Modeling and predicting behavioral dynamics on the web. In: Proceedings of the 21st International Conference on World Wide Web, WWW 2012, pp. 599–608. ACM, New York (2012)CrossRefGoogle Scholar
  14. 14.
    Yang, J., Leskovec, J.: Patterns of temporal variation in online media. In: Proceedings of the Fourth ACM International Conference on Web Search and Data Mining, WSDM 2011, pp. 177–186. ACM, New York (2011)CrossRefGoogle Scholar
  15. 15.
    Kulkarni, A., Teevan, J., Svore, K.M., Dumais, S.T.: Understanding temporal query dynamics. In: Proceedings of the Fourth ACM International Conference on Web Search and Data Mining, WSDM 2011, pp. 167–176. ACM, New York (2011)CrossRefGoogle Scholar
  16. 16.
  17. 17.
    Brockwell, P.J., Davis, R.A.: Introduction to time series and forecasting. Springer (2002)Google Scholar
  18. 18.
  19. 19.
    Chang, C.-C., Lin, C.-J.: Libsvm: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology (TIST) 2(3), 27 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Pengjie Ren
    • 1
  • Zhumin Chen
    • 1
  • Xiaomeng Song
    • 1
  • Bin Li
    • 1
  • Haopeng Yang
    • 1
  • Jun Ma
    • 1
  1. 1.School of Computer Science and TechnologyShandong UniversityJinanChina

Personalised recommendations