Advertisement

Towards an Operationalization of the “Physics of Notations” for the Analysis of Visual Languages

  • Harald Störrle
  • Andrew Fish
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8107)

Abstract

We attempt to validate the conceptual framework “Physics of Notation” (PoN) as a means for analysing visual languages by applying it to UML Use Case Diagrams. We discover that the PoN, in its current form, is neither precise nor comprehensive enough to be applied in an objective way to analyse practical visual software engineering notations. We propose an operationalization of a part of the PoN, highlight conceptual shortcomings of the PoN, and explore ways to address them.

Keywords

Visual Language Concrete Syntax Visual Distance Visual Variable Case Diagram 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bertin, J.: Graphics and Graphic Information- Processing. Verlag Walther de Gruyter (1981)Google Scholar
  2. 2.
    Bertin, J.: Semiology of Graphics: Diagrams, Networks, Maps. Univ. Wisconsin Press (1983)Google Scholar
  3. 3.
    Blackwell, A., Green, T.R.G.: Notational systems–the cognitive dimensions of notations framework. In: HCI Models, Theories and Frameworks: Toward a Multidisciplinary Science, pp. 103–134 (2003)Google Scholar
  4. 4.
    Diprose, J.P., MacDonald, B.A., Hosking, J.G.: Ruru: A spatial and interactive visual programming language for novice robot programming. In: Costagliola, G., et al. (eds.) Proc. IEEE Symp. Visual Languages and Human-Centric Computing (VL/HCC 2011), pp. 25–32. IEEE Computer Society (2011)Google Scholar
  5. 5.
    Dobing, B., Parsons, J.: How UML is used. Com. ACM 49(5), 109–113 (2006)Google Scholar
  6. 6.
    Fish, A., Störrle, H.: Visual qualities of the Unified Modeling Language: Deficiencies and Improvements. In: Cox, P., Hosking, J. (eds.) Proc. IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC 2007), pp. 41–49. IEEE Computer Society (2007)Google Scholar
  7. 7.
    Genon, N., Amyot, D., Heymans, P.: Analysing the Cognitive Effectiveness of the UCM Visual Notation. In: Kraemer, F.A., Herrmann, P. (eds.) SAM 2010. LNCS, vol. 6598, pp. 221–240. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Genon, N., Heymans, P., Amyot, D.: Analysing the Cognitive Effectiveness of the BPMN 2.0 Visual Notation. In: Malloy, B., Staab, S., van den Brand, M. (eds.) SLE 2010. LNCS, vol. 6563, pp. 377–396. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Green, T.R.G., Blandford, A., Church, L., Roast, C., Clarke, S.: Cognitive Dimensions: achievements, new directions, and open questions. J. Visual Languages and Computing 17(4), 328–365 (2006)CrossRefGoogle Scholar
  10. 10.
    Green, T.R.G., Petre, M.: Usability analysis of visual programming environments: A ‘cognitive dimensions’ framework. J. Visual Languages and Computing (7), 131–174 (1996)Google Scholar
  11. 11.
    Green, T.: Cognitive dimensions of notations, pp. 443–460. Cambridge University Press (1989)Google Scholar
  12. 12.
    Gregor, S.: The Nature of Theory in Information Systems. MIS Quarterly 30(3), 611–642 (2006)Google Scholar
  13. 13.
    Gurr, C.: Effective Diagrammatic Communication: Syntactic, Semantic and Pragmatic Issues. J. Visual Languages and Computing 10, 317–342 (1999)CrossRefGoogle Scholar
  14. 14.
    Kutar, M., Britton, C., Barker, T.: A comparison of empirical study and cognitive dimensions analysis in the evaluation of uml diagrams. In: Proc. 14th Psychology of Programming Interest Group (2002)Google Scholar
  15. 15.
    Larkin, J., Simon, H.: Why a diagram is (sometimes) worth ten thousand words. Cognitive Science 11, 65–99 (1987)CrossRefGoogle Scholar
  16. 16.
    Moody, D.L.: The Physics of Notations: Toward a Scientific Basis for Constructing Visual Notations in Software Engineering. IEEE Trans. Software Engineering 35(6), 756–779 (2009)CrossRefGoogle Scholar
  17. 17.
    Moody, D., van Hillegersberg, J.: Evaluating the Visual Syntax of UML: An Analysis of the Cognitive Effectiveness of the UML Family of Diagrams. In: Gašević, D., Lämmel, R., Van Wyk, E. (eds.) SLE 2008. LNCS, vol. 5452, pp. 16–34. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  18. 18.
    OMG: OMG Unified Modeling Language (OMG UML), Superstructure, V2.4 (ptc/2010-11-14). Technical report, Object Management Group (January 2011)Google Scholar
  19. 19.
    Roast, C.R., Khazaei, B.: An Investigation into the Validation of Formalised Cognitive Dimensions, pp. 109–122. Springer (2007)Google Scholar
  20. 20.
    Shimojima, A.: Inferential and Expressive Capacities of Graphical Representations: Survey and Some Generalizations. In: Blackwell, A.F., Marriott, K., Shimojima, A. (eds.) Diagrams 2004. LNCS (LNAI), vol. 2980, pp. 18–21. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  21. 21.
    Stevens, S.S.: Psychophysics. J. Wiley & Sons (1975)Google Scholar
  22. 22.
    Störrle, H.: On the Impact of Layout Quality to Unterstanding UML Diagrams. In: Costagliola, G., et al. (eds.) Proc. IEEE Symp. Visual Languages and Human-Centric Computing (VL/HCC 2011), pp. 135–142. IEEE Computer Society (2011)Google Scholar
  23. 23.
    Störrle, H.: On the Impact of Layout Quality to Unterstanding UML Diagrams: Diagram Type and Expertise. In: Costagliola, G., Ko, A., Cypher, A., Nichols, J., Scaffidi, C., Kelleher, C., Myers, B. (eds.) Proc. IEEE Symp. Visual Languages and Human-Centric Computing (VL/HCC 2012), pp. 195–202. IEEE Computer Society (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Harald Störrle
    • 1
  • Andrew Fish
    • 2
  1. 1.Dept. of Informatics and Applied MathematicsTechnical University of DenmarkDenmark
  2. 2.School of Computing, Engineering and MathematicsUniversity of BrightonUK

Personalised recommendations