Distributed Randomized Broadcasting in Wireless Networks under the SINR Model

  • Tomasz Jurdzinski
  • Dariusz R. Kowalski
  • Michal Rozanski
  • Grzegorz Stachowiak
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8205)


In the advent of large-scale multi-hop wireless technologies, such as MANET, VANET, iThings, it is of utmost importance to devise efficient distributed protocols to maintain network architecture and provide basic communication tools. One of such fundamental communication tasks is broadcast, also known as a 1-to-all communication. We present a randomized algorithm that accomplishes broadcast in O(D + log(1/δ)) rounds with probability at least 1 − δ on any uniform-power network of n nodes and diameter D, when each station is equipped with its coordinates and local estimate of network density. Next, we develop algorithms for the model where no estimate of local density is available, except of the value n of the size of a given network. First, we provide a simple and almost oblivious algorithm which accomplishes broadcast in O(Dlogn(logn + log(1/δ))) rounds with probability at least 1 − δ. We further enhance this algorithm with more adaptive leader election routine and show that the resulting protocol achieves better time performance O((D + log(1/δ))logn) with probability at least 1 − δ. Our algorithms are the first provably efficient and well-scalable randomized distributed solutions for the (global) broadcast task in the ad hoc setting with coordinates. This could be also contrasted with the complexity of broadcast by weak devices, for which such scalable algorithms (with respect to D and logn) cannot be obtained [11].


Ad hoc wireless networks Signal-to-Interference-and-Noise-Ratio (SINR) model Broadcast Distributed algorithms 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bar-Yehuda, R., Goldreich, O., Itai, A.: On the Time-Complexity of Broadcast in Multi-hop Radio Networks: An Exponential Gap Between Determinism and Randomization. J. Comput. Syst. Sci 45(1), 104–126 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Chrobak, M., Gasieniec, L., Rytter, W.: Fast broadcasting and gossiping in radio networks. J. Algorithms 43(2), 177–189 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Czumaj, A., Rytter, W.: Broadcasting algorithms in radio networks with unknown topology. In: FOCS, pp. 492–501 (2003)Google Scholar
  4. 4.
    Daum, S., Gilbert, S., Kuhn, F., Newport, C.: Broadcast in the ad hoc SINR model. In: Afek, Y. (ed.) DISC 2013. LNCS, vol. 8205, pp. 358–372. Springer, Heidelberg (2013)Google Scholar
  5. 5.
    Dessmark, A., Pelc, A.: Broadcasting in geometric radio networks. J. Discrete Algorithms 5(1), 187–201 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Emek, Y., Kantor, E., Peleg, D.: On the effect of the deployment setting on broadcasting in euclidean radio networks. In: PODC, pp. 223–232 (2008)Google Scholar
  7. 7.
    Farach-Colton, M., Fernandez Anta, A., Mosteiro, M.A.: Optimal memory-aware Sensor Network Gossiping (or how to break the Broadcast lower bound). Theor. Comput. Sci. 472, 60–80 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Goussevskaia, O., Moscibroda, T., Wattenhofer, R.: Local broadcasting in the physical interference model. In: Segal, M., Kesselman, A. (eds.) DIALM-POMC, pp. 35–44.ACM (2008)Google Scholar
  9. 9.
    Goussevskaia, O., Pignolet, Y.A., Wattenhofer, R.: Efficiency of wireless networks: Approximation algorithms for the physical interference model. Foundations and Trends in Networking 4(3), 313–420 (2010)Google Scholar
  10. 10.
    Halldorsson, M.M., Mitra, P.: Towards tight bounds for local broadcasting. In: FOMC 2012, p. 2 (2012)Google Scholar
  11. 11.
    Jurdzinski, T., Kowalski, D.R., Stachowiak, G.: Distributed Deterministic Broadcasting in Wireless Networks of Weak Devices. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part II. LNCS, vol. 7966, pp. 632–644. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  12. 12.
    Jurdzinski, T., Kowalski, D.R., Stachowiak, G.: Distributed Deterministic Broadcasting in Uniform-Power Ad Hoc Wireless Networks. In: Gąsieniec, L., Wolter, F. (eds.) FCT 2013. LNCS, vol. 8070, pp. 195–209. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  13. 13.
    Kesselheim, T.: Dynamic packet scheduling in wireless networks. In: PODC, pp. 281–290 (2012)Google Scholar
  14. 14.
    Kesselheim, T., Vöcking, B.: Distributed contention resolution in wireless networks. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 163–178. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Kowalski, D.R.: On selection problem in radio networks. In: Aguilera, M.K., Aspnes, J. (eds.) PODC, pp. 158–166. ACM (2005)Google Scholar
  16. 16.
    Kowalski, D.R., Pelc, A.: Broadcasting in undirected ad hoc radio networks. Distributed Computing 18(1), 43–57 (2005)CrossRefzbMATHGoogle Scholar
  17. 17.
    Kushilevitz, E., Mansour, Y.: An omega(d log (n/d)) lower bound for broadcast in radio networks. SIAM J. Comput. 27(3), 702–712 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Yu, D., Hua, Q.-S., Wang, Y., Tan, H., Lau, F.C.M.: Distributed multiple-message broadcast in wireless ad-hoc networks under the SINR model. In: Even, G., Halldórsson, M.M. (eds.) SIROCCO 2012. LNCS, vol. 7355, pp. 111–122. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  19. 19.
    Yu, D., Wang, Y., Hua, Q.-S., Lau, F.C.M.: Distributed local broadcasting algorithms in the physical interference model. In: DCOSS, pp. 1–8. IEEE (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Tomasz Jurdzinski
    • 1
  • Dariusz R. Kowalski
    • 2
  • Michal Rozanski
    • 1
  • Grzegorz Stachowiak
    • 1
  1. 1.Institute of Computer ScienceUniversity of WrocławPoland
  2. 2.Department of Computer ScienceUniversity of LiverpoolUnited Kingdom

Personalised recommendations