Advertisement

Adaptive Register Allocation with a Linear Number of Registers

  • Carole Delporte-Gallet
  • Hugues Fauconnier
  • Eli Gafni
  • Leslie Lamport
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8205)

Abstract

We give an adaptive algorithm in which processes use multi-writer multi-reader registers to acquire exclusive write access to their own single-writer, multi-reader registers. It is the first such algorithm that uses a number of registers linear in the number of participating processes. Previous adaptive algorithms require at least Θ(n 3/2) registers.

Keywords

shared memory read/write registers distributed algorithms wait-free space complexity renaming 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abadi, M., Lamport, L.: The existence of refinement mappings. Theoretical Computer Science 82(2), 253–284 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Afek, Y., Attiya, H., Dolev, D., Gafni, E., Merritt, M., Shavit, N.: Atomic snapshots of shared memory. Journal of the ACM 40(4), 873–890 (1993)CrossRefzbMATHGoogle Scholar
  3. 3.
    Afek, Y., Stupp, G., Touitou, D.: Long-lived adaptive collect with applications. In: FOCS, pp. 262–272. IEEE Computer Society (1999)Google Scholar
  4. 4.
    Anderson, J.H.: Multi-writer composite registers. Distributed Computing 7(4), 175–195 (1994)CrossRefGoogle Scholar
  5. 5.
    Ashcroft, E.A.: Proving assertions about parallel programs. Journal of Computer and System Sciences 10, 110–135 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Aspnes, J.: Slightly smaller splitter networks. CoRR, abs/1011.3170 (2010)Google Scholar
  7. 7.
    Attiya, H., Bar-Noy, A., Dolev, D., Peleg, D., Reischuk, R.: Renaming in an asynchronous environment. Journal of the ACM 37(3), 524–548 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Attiya, H., Fouren, A.: Adaptive and efficient algorithms for lattice agreement and renaming. SIAM J. Comput. 31(2), 642–664 (2002)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Attiya, H., Welch, J.: Distributed Computing. Fundamentals, Simulations, and Advanced Topics. McGraw-Hill (1998)Google Scholar
  10. 10.
    Borowsky, E., Gafni, E.: Immediate atomic snapshots and fast renaming. In: PODC, pp. 41–51. ACM Press (1993)Google Scholar
  11. 11.
    Delporte-Gallet, C., Fauconnier, H., Gafni, E., Rajsbaum, S.: Linear Space Bootstrap Communication Schemes. In: Frey, D., Raynal, M., Sarkar, S., Shyamasundar, R.K., Sinha, P. (eds.) ICDCN 2013. LNCS, vol. 7730, pp. 363–377. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  12. 12.
    Fich, F.E., Herlihy, M., Shavit, N.: On the space complexity of randomized synchronization. Journal of the ACM 45(5), 843–862 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Gafni, E.: A simple algorithmic characterization of uniform solvability. In: FOCS, pp. 228–237. IEEE Computer Society (2002)Google Scholar
  14. 14.
    Gafni, E., Merritt, M., Taubenfeld, G.: The concurrency hierarchy, and algorithms for unbounded concurrency. In: PODC, pp. 161–169. ACM (2001)Google Scholar
  15. 15.
    Lamport, L.: Proofs for adaptive register allocation with a linear number of registers, http://research.microsoft.com/en-us/um/people/lamport/tla/snapshot.html
  16. 16.
    Lamport, L.: A fast mutual exclusion algorithm. ACM Transactions on Computer Systems 5(1), 1–11 (1987)CrossRefGoogle Scholar
  17. 17.
    Lamport, L.: Specifying Systems, The TLA+ Language and Tools for Hardware and Software Engineers. Addison-Wesley (2002)Google Scholar
  18. 18.
    Lamport, L.: The PlusCal Algorithm Language. In: Leucker, M., Morgan, C. (eds.) ICTAC 2009. LNCS, vol. 5684, pp. 36–60. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  19. 19.
    Moir, M., Anderson, J.H.: Wait-free algorithms for fast, long-lived renaming. Sci. Comput. Program. 25(1), 1–39 (1995)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Carole Delporte-Gallet
    • 1
  • Hugues Fauconnier
    • 1
  • Eli Gafni
    • 2
  • Leslie Lamport
    • 3
  1. 1.U. Paris DiderotFrance
  2. 2.Computer Science DepartmentUCLAUSA
  3. 3.Microsoft ResearchUSA

Personalised recommendations