Sensitivity Analysis for Declarative Relational Query Languages with Ordinal Ranks

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7773)

Abstract

We present sensitivity analysis for results of query executions in a relational model of data extended by ordinal ranks. The underlying model of data results from the ordinary Codd’s model of data in which we consider ordinal ranks of tuples in data tables expressing degrees to which tuples match queries. In this setting, we show that ranks assigned to tuples are insensitive to small changes, i.e., small changes in the input data do not yield large changes in the results of queries.

Keywords

Declarative query languages Ordinal ranks Relational databases Residuated lattices 

References

  1. 1.
    Abiteboul, S., et al.: The lowell database research self-assessment. Commun. ACM 48(5), 111–118 (2005)CrossRefGoogle Scholar
  2. 2.
    Belohlavek, R.: Fuzzy Relational Systems: Foundations and Principles. Kluwer, Academic/Plenum Publishers, New York (2002)CrossRefGoogle Scholar
  3. 3.
    Belohlavek, R., Vychodil, V.: Logical foundations for similarity-based databases. In: Chen, L., Liu, C., Liu, Q., Deng, K. (eds.) DASFAA 2009 Workshops. LNCS, vol. 5667, pp. 137–151. Springer, Heidelberg (2009)Google Scholar
  4. 4.
    Belohlavek, R., Vychodil, V.: Query systems in similarity-based databases: logical foundations, expressive power, and completeness. In: Proceedings of the ACM SAC 2010, pp. 1648–1655. ACM Press (2010)Google Scholar
  5. 5.
    Belohlavek, R., Vychodil, V.: Codd’s relational model from the point of view of fuzzy logic. J. Logic and Comput. 21(5), 851–862 (2011)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Birkhoff, G.: Lattice theory. American Mathematical Society, Providence (1940)Google Scholar
  7. 7.
    Buckles, B.P., Petry, F.E.: Fuzzy databases in the new era. In: Proceedings of the ACM SAC 1995, Nashville, TN, pp. 497–502. ACM Press (1995)Google Scholar
  8. 8.
    Cavallo, R., Pittarelli, M.: The theory of probabilistic databases. VLDB 1987, 71–81 (1987)Google Scholar
  9. 9.
    Codd, E.F.: A Relational Model of Data for Large Shared Data Banks. Commun. ACM 13(6), 377–387 (1970)CrossRefMATHGoogle Scholar
  10. 10.
    Dalvi, N., Ré, C., Suciu, D.: Probabilistic databases: diamonds in the dirt. Commun. ACM 52, 86–94 (2009)CrossRefGoogle Scholar
  11. 11.
    Dalvi, N., Suciu, D.: Efficient query evaluation on probabilistic databases. VLDB J. 16, 523–544 (2007)CrossRefGoogle Scholar
  12. 12.
    Dalvi, N., Suciu, D.: Management of probabilistic data: foundations and challenges. In: ACM PODS 2007, pp. 1–12 (2007)Google Scholar
  13. 13.
    Date, C.J.: Database Relational Model: A Retrospective Review and Analysis. Addison Wesley, Reading (2000)Google Scholar
  14. 14.
    Date, C.J., Darwen, H.: Databases, Types and the Relational Model, 3rd edn. Addison Wesley, Reading (2006)Google Scholar
  15. 15.
    Fagin, R.: Combining fuzzy information: an overview. ACM SIGMOD Record 31(2), 109–118 (2002)CrossRefGoogle Scholar
  16. 16.
    Gerla, G.: Fuzzy Logic. Mathematical Tools for Approximate Reasoning. Kluwer, Dordrecht (2001)MATHGoogle Scholar
  17. 17.
    Goguen, J.A.: The logic of inexact concepts. Synthese 18, 325–373 (1968-1969)Google Scholar
  18. 18.
    Gottwald, S.: Mathematical fuzzy logics. Bull. for Symbolic Logic 14(2), 210–239 (2008)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht (1998)CrossRefMATHGoogle Scholar
  20. 20.
    Hájek, P.: On very true. Fuzzy Sets Syst. 124, 329–333 (2001)CrossRefMATHGoogle Scholar
  21. 21.
    Illyas, I.F., Aref, W.G., Elmagarmid, A.K.: Supporting top-\(k\) join queries in relational databases. VLDB J. 13, 207–221 (2004)Google Scholar
  22. 22.
    Imieliński, T., Lipski, W.: Incomplete information in relational databases. J. ACM 31, 761–791 (1984)CrossRefMATHGoogle Scholar
  23. 23.
    Koch, C.: On query algebras for probabilistic databases. SIGMOD Record 37(4), 78–85 (2008)CrossRefGoogle Scholar
  24. 24.
    Li, C., Chang, K.C.-C., Ilyas, I.F., Song S.: RankSQL: Query Algebra and Optimization for Relational top-k queries. In: ACM SIGMOD 2005, pp. 131–142. ACM Press (2005)Google Scholar
  25. 25.
    Maier, D.: The Theory of Relational Databases. Comp. Sci. Press, Rockville (1983)MATHGoogle Scholar
  26. 26.
    Olteanu, D., Huangm, J., Koch, C.: Approximate confidence computation in probabilistic databases. IEEE ICDE 2010, 145–156 (2010)Google Scholar
  27. 27.
    Pavelka, J.: On fuzzy logic I, II, III. Z. Math. Logik Grundlagen Math. 25, 45–52; 25, 119–134; 25, 447–464 (1979)Google Scholar
  28. 28.
    Raju, K.V.S.V.N., Majumdar, A.K.: Fuzzy functional dependencies and lossless join decomposition of fuzzy relational database systems. ACM Trans. Database Systems 13(2), 129–166 (1988)CrossRefGoogle Scholar
  29. 29.
    Shenoi, S., Melton, A.: Proximity relations in the fuzzy relational database model. Fuzzy Sets Syst. 100, 51–62 (1999)CrossRefGoogle Scholar
  30. 30.
    Suciu, D., Olteanu, D., Ré, C., Koch, C.: Probabilistic Databases. Synthesis Lectures on Data Management. Morgan & Claypool Publishers (2011)Google Scholar
  31. 31.
    Takahashi, Y.: Fuzzy database query languages and their relational completeness theorem. IEEE Trans. Knowl. Data Eng. 5, 122–125 (1993)CrossRefGoogle Scholar
  32. 32.
    Takeuti, G., Titani, S.: Globalization of intuitionistic set theory. Ann. Pure Appl. Logic 33, 195–211 (1987)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Radim Belohlavek
    • 1
  • Lucie Urbanova
    • 1
  • Vilem Vychodil
    • 1
  1. 1.DAMOL (Data Analysis and Modeling Laboratory), Department of Computer SciencePalacky UniversityOlomoucCzech Republic

Personalised recommendations