A Fourth-Order Iterative Solver for the Singular Poisson Equation

  • Stéphane Abide
  • Xavier Chesneau
  • Belkacem Zeghmati
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8236)

Abstract

A compact fourth-order finite difference scheme solver devoted to the singular-Poisson equation is proposed and verified. The solver is based on a mixed formulation: the Poisson equation is splitted into a system of partial differential equations of the first order. This system is then discretized using a fourth-order compact scheme. This leads to a sparse linear system but introduces new variables related to the gradient of an unknow function. The Schur factorization allows us to work on a linear sub-problem for which a conjugated-gradient preconditioned by an algebraic multigrid method is proposed.Numerical results show that the new proposed Poisson solver is efficient while retaining the fourth-order compact accuracy.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ferziger, J.H., Perić, M.: Computational Methods for Fluid Dynamics. Springer-verlag edn. Springer (2002)Google Scholar
  2. 2.
    Lele, S.K.: Compact finite difference schemes with spectral-like resolution. Journal of Computational Physics 103(1), 16–42 (1992)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Boersma, B.J.: A 6th order staggered compact finite difference method for the incompressible Navier-Stokes and scalar transport equations. Journal of Computational Physics 230(12), 4940–4954 (2011)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Brüger, A., Gustafsson, B., Lötstedt, P., Nilsson, J.: High-order accurate solution of the incompressible Navier-Stokes equations. Journal of Computational Physics 203(1), 49–71 (2005)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Demuren, A.O., Wilson, R.V., Carpenter, M.: Higher order compact schemes for numerical simulation of incompressible flows, part 1: Theroretical development. Numerical Heat Transfer Part B Fundamentals 39, 207–230 (2001)CrossRefGoogle Scholar
  6. 6.
    Schiestel, R., Viazzo, S.: A hermitian-fourier numerical method for solving the incompressible Navier-Stokes equations. Computers & Fluids 24(6), 739–752 (1995)CrossRefMATHGoogle Scholar
  7. 7.
    Knikker, R.: Study of a staggered fourth-order compact scheme for unsteady incompressible viscous flows. International Journal for Numerical Methods in Fluids 59(10), 1063–1092 (2009)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Collatz, L.: The Numerical Treatment of Differential Equations. Springer, Berlin (1960)CrossRefMATHGoogle Scholar
  9. 9.
    Spotz, W.F., Carey, G.F.: A high-order compact formulation for the 3D Poisson equation. Numerical Methods for Partial Differential Equations 12(2), 235–243 (1996)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Ge, L., Zhang, J.: High Accuracy Iterative Solution of Convection Diffusion Equation with Boundary Layers on Nonuniform Grids. Journal of Computational Physics 171(2), 560–578 (2001)CrossRefMATHGoogle Scholar
  11. 11.
    Spotz, W.F.: Formulation and experiments with high-order compact schemes for nonuniform grids. International Journal of Numerical Methods for Heat Fluid Flow 8(3), 288–303 (1998)CrossRefMATHGoogle Scholar
  12. 12.
    Gupta, M.M., Zhang, J.: High accuracy multigrid solution of the 3D convection diffusion equation. Applied Mathematics and Computation 113 (2000)Google Scholar
  13. 13.
    Zhuang, Y., Sun, X.H.: A High-Order Fast Direct Solver for Singular Poisson Equations. Journal of Computational Physics 171(1), 79–94 (2001)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Vedy, E., Viazzo, S., Schiestel, R.: A high-order finite difference method for incompressible fluid turbulence simulations. International Journal for Numerical Methods in Fluids 42(11), 1155–1188 (2003)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Abide, S., Viazzo, S.: A 2D compact fourth-order projection decomposition method. Journal of Computational Physics 206(1), 252–276 (2005)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Carey, G.F., Spotz, W.F.: Higher-order compact mixed methods. Communications in Numerical Methods in Engineering 13(7), 553–564 (1997)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Nagarajan, S., Lele, S.K., Ferziger, J.H.: A robust high-order compact method for large eddy simulation. Journal of Computational Physics 191(2), 392–419 (2003)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Notay, Y.: An aggregation-based algebraic multigrid method. Electronic Transactions on Numerical Analysis 37, 123–146 (2010)MathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Stéphane Abide
    • 1
  • Xavier Chesneau
    • 1
  • Belkacem Zeghmati
    • 1
  1. 1.LAboratoire de Mathématiques et PhySique, EA 4217Univ. Perpignan via DomitiaPerpignanFrance

Personalised recommendations