Distributed Generation and Resilience in Power Grids

  • Antonio Scala
  • Mario Mureddu
  • Alessandro Chessa
  • Guido Caldarelli
  • Alfonso Damiano
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7722)


We study the effects of the allocation of distributed generation on the resilience of power grids. We find that an unconstrained allocation and growth of the distributed generation can drive a power grid beyond its design parameters. In order to overcome such a problem, we propose a topological algorithm derived from the field of Complex Networks to allocate distributed generation sources in an existing power grid.


distributed generation AC power model complex networks pagerank 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
  2. 2.
  3. 3.
    Andersen, R., Chung, F., Lang, K.: Local graph partitioning using pagerank vectors. In: Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2006, pp. 475–486. IEEE Computer Society, Washington, DC (2006)Google Scholar
  4. 4.
    Azzalini, A.: The skew-normal distribution and related multivariate families. Scandinavian Journal of Statistics 32(2), 159–188 (2005)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Baghaie, M., Moeller, S., Krishnamachari, B.: Energy routing on the future grid: A stochastic network optimization approach, pp. 1–8 (October 2010)Google Scholar
  6. 6.
    Berge, C.: Théorie des graphes et ses applications. Collection Universitaire de Mathématiques, II, Paris, Dunod (1958)Google Scholar
  7. 7.
    Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine. Comput. Netw. ISDN Syst. 30(1-7), 107–117 (1998)CrossRefGoogle Scholar
  8. 8.
    Brummitt, C.D., D’Souza, R.M., Leicht, E.A.: Suppressing cascades of load in interdependent networks. Proceedings of the National Academy of Sciences (2012)Google Scholar
  9. 9.
    Buldyrev, S.V., Parshani, R., Paul, G., Stanley, H.E., Havlin, S.: Catastrophic cascade of failures in interdependent networks. Nature 464(7291), 1025–1028 (2010)CrossRefGoogle Scholar
  10. 10.
    Caldarelli, G.: Scale-free Networks. Oxford University Press (2007)Google Scholar
  11. 11.
    Carreras, B.A., Lynch, V.E., Dobson, I., Newman, D.E.: Critical points and transitions in an electric power transmission model for cascading failure blackouts. Chaos: An Interdisciplinary Journal of Nonlinear Science 12(4), 985–994 (2002)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Carreras, B.A., Newman, D.E., Gradney, P., Lynch, V.E., Dobson, I.: Interdependent risk in interacting infrastructure systems. In: Proceedings of the 40th Annual Hawaii International Conference on System Sciences, HICSS 2007, p. 112. IEEE Computer Society, Washington, DC (2007)CrossRefGoogle Scholar
  13. 13.
    Chertkov, M., Pan, F., Stepanov, M.G.: Predicting failures in power grids: The case of static overloads. IEEE Trans. Smart Grid 2(1), 162–172 (2011)CrossRefGoogle Scholar
  14. 14.
    Chung, F., Zhao, W.: Pagerank and random walks on graphs,
  15. 15.
    Dobson, I., Carreras, B., Lynch, V., Newman, D.: An initial model for complex dynamics in electric power system blackouts. In: Proceedings of the 34th Annual Hawaii International Conference on System Sciences (HICSS-34), HICSS 2001, vol. 2, p. 2017. IEEE Computer Society, Washington, DC (2001)Google Scholar
  16. 16.
    Dorfler, F., Bullo, F.: Synchronization and transient stability in power networks and non-uniform Kuramoto oscillators. SIAM Journal on Control and Optimization (2012) (to appear) (submitted October 2011)Google Scholar
  17. 17.
    Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. The European Physical Journal B - Condensed Matter and Complex Systems 61(4), 485–491 (2008)CrossRefGoogle Scholar
  18. 18.
    Fioriti, V., Ruzzante, S., Castorini, E., Marchei, E., Rosato, V.: Critical information infrastructure security, pp. 14–23. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  19. 19.
    Grainger, J., Stevenson, W.: Power System Analysis. McGraw-Hill, New York (1994)Google Scholar
  20. 20.
    Laprie, J.C., Kanoun, K., Kaâniche, M.: Modelling interdependencies between the electricity and information infrastructures. CoRR abs/0809.4107 (2008)Google Scholar
  21. 21.
    Pahwa, S., Hodges, A., Scoglio, C., Wood, S.: Topological analysis of the power grid and mitigation strategies against cascading failures. ArXiv e-prints (June 2010)Google Scholar
  22. 22.
    Sachtjen, M.L., Carreras, B.A., Lynch, V.E.: Disturbances in a power transmission system. Phys. Rev. E 61, 4877–4882 (2000)CrossRefGoogle Scholar
  23. 23.
    Stagg, G., El-Abiad, A.: Computer Methods In Power System Analysis. McGraw-Hill Education (April 1968)Google Scholar
  24. 24.
    Stott, B., Jardim, J., Alsac, O.: Dc power flow revisited. IEEE Transactions on Power Systems 24(3), 1290–1300 (2009)CrossRefGoogle Scholar
  25. 25.
    Wood, A.J., Wollenberg, B.F.: Power Generation, Operation and Control. Wiley, New York (1984)Google Scholar
  26. 26.
    Youssef, M., Scoglio, C., Pahwa, S.: Robustness measure for power grids with respect to cascading failures. In: Proceedings of the 2011 International Workshop on Modeling, Analysis, and Control of Complex Networks, Cnet 2011. ITCP, pp. 45–49 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Antonio Scala
    • 1
    • 2
    • 3
  • Mario Mureddu
    • 4
    • 5
  • Alessandro Chessa
    • 1
    • 5
  • Guido Caldarelli
    • 2
    • 1
    • 3
  • Alfonso Damiano
    • 6
  1. 1.ISC-CNR Physics Dept.Univ. ”La Sapienza”RomaItaly
  2. 2.IMT Alti Studi LuccaLuccaItaly
  3. 3.London Institute of Mathematical SciencesLondonUK
  4. 4.Department of PhysicsUniversity of CagliariItaly
  5. 5.Complex Systems Computational LaboratoryLinkalabCagliariItaly
  6. 6.Dipartimento di Ingegneria Elettrica ed ElettronicaUniversità di CagliariItaly

Personalised recommendations