Algebraic Analysis of Attack Impacts and Countermeasures in Critical Infrastructures

  • Thomas Richard McEvoy
  • Stephen D. Wolthusen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7722)


Critical infrastructure systems are distributed environments in which the mixture of technologies and interdependencies between physical and logical components lead to complex interactions. Calculating the possible impacts of attacks and the success of proposed countermeasures in such environments represents a severe problem. We propose a process algebraic technique as a means of affecting such calculations. Our approach allows us to demonstrate equivalence w.r.t. attack and defense strategies respectively. It also forms a basis for determining the efficiency and effectiveness of countermeasures. In comparison with other methods, such as attack/defense trees and attack graphs, our approach allows us to relax assumptions regarding the ordering of events by applying structural reasoning to outcomes and reducing the state space for the analysis. An obvious application is to risk management.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Langner, R.: Robust Control System Networks. Momentum Press, New York (2012)Google Scholar
  2. 2.
    McEvoy, T.R., Wolthusen, S.D.: A Formal Adversary Capability Model for SCADA Environments. In: Xenakis, C., Wolthusen, S. (eds.) CRITIS 2010. LNCS, vol. 6712, pp. 93–103. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Mauw, S., Oostdijk, M.: Foundations of Attack Trees. In: Won, D.H., Kim, S. (eds.) ICISC 2005. LNCS, vol. 3935, pp. 186–198. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Kordy, B., Mauw, S., Radomirović, S., Schweitzer, P.: Foundations of Attack–Defense Trees. In: Degano, P., Etalle, S., Guttman, J. (eds.) FAST 2010. LNCS, vol. 6561, pp. 80–95. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Bistarelli, S., Peretti, P., Trubitsyna, I.: Analyzing Security Scenarios Using Defence Trees and Answer Set Programming. Electron. Notes Theor. Comput. Sci. 197(2), 121–129 (2008)CrossRefGoogle Scholar
  6. 6.
    Ingols, K., Chu, M., Lippmann, R., Webster, S., Boyer, S.: Modeling Modern Network Attacks and Countermeasures Using Attack Graphs. In: Annual Computer Security Applications Conference, ACSAC 2009, pp. 117–126 (December 2009)Google Scholar
  7. 7.
    Lippmann, R.P., Ingols, K.W.: An Annotated Review of Past Papers on Attack Graphs (1998)Google Scholar
  8. 8.
    Braynov, S., Jadliwala, M.: Representation and Analysis of Coordinated Attacks. In: Proceedings of the 2003 ACM Workshop on Formal Methods in Security Engineering, FMSE 2003, pp. 43–51. ACM, New York (2003)CrossRefGoogle Scholar
  9. 9.
    Sangiorgi, D., Walker, D.: π-Calculus: A Theory of Mobile Processes. Cambridge University Press, New York (2001)zbMATHGoogle Scholar
  10. 10.
    Delaune, S., Kremer, S., Ryan, M.D.: Symbolic Bisimulation for the Applied Pi Calculus. J. Comput. Secur. 18(2), 317–377 (2010)CrossRefGoogle Scholar
  11. 11.
    McEvoy, T.R., Wolthusen, S.: Agent Interaction and State Determination in SCADA Systems. In: Butts, J., Shenoi, S. (eds.) Critical Infrastructure Protection. IFIP AICT, pp. 99–109. Springer, Heidelberg (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Thomas Richard McEvoy
    • 2
  • Stephen D. Wolthusen
    • 1
    • 2
  1. 1.Norwegian Information Security Laboratory, Department of Computer ScienceGjøvik University CollegeNorway
  2. 2.Information Security Group, Department of MathematicsRoyal Holloway, University of LondonUK

Personalised recommendations