Diversity-Driven Widening

  • Violeta N. Ivanova
  • Michael R. Berthold
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8207)


This paper follows our earlier publication [1], where we introduced the idea of tuned data mining which draws on parallel resources to improve model accuracy rather than the usual focus on speed-up. In this paper we present a more in-depth analysis of the concept of Widened Data Mining, which aims at reducing the impact of greedy heuristics by exploring more than just one suitable solution at each step. In particular we focus on how diversity considerations can substantially improve results. We again use the greedy algorithm for the set cover problem to demonstrate these effects in practice.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akbar, Z., Ivanova, V.N., Berthold, M.R.: Parallel data mining revisited. Better, not faster. In: Hollmén, J., Klawonn, F., Tucker, A. (eds.) IDA 2012. LNCS, vol. 7619, pp. 23–34. Springer, Heidelberg (2012)Google Scholar
  2. 2.
    Akl, S.G.: Parallel real-time computation: Sometimes quantity means quality. Computing and Informatics 21, 455–487 (2002)Google Scholar
  3. 3.
    Kumar, V.: Special Issue on High-performance Data Mining. Academic Press (2001)Google Scholar
  4. 4.
    Kargupta, H., Chan, P.: Advances in Distributed and Parallel Knowledge Discovery. AAAI/MIT Press (2000)Google Scholar
  5. 5.
    Zaki, M.J., Ho, C.-T. (eds.): KDD 1999. LNCS (LNAI), vol. 1759. Springer, Heidelberg (2000)Google Scholar
  6. 6.
    Zaki, M.J., Pan, Y.: Introduction: Recent developments in parallel and distributed data mining. DPD 11(2), 123–127 (2002)Google Scholar
  7. 7.
    Shafer, J., Agrawal, R., Mehta, M.: Sprint: A scalable parallel classifier for data mining. In: VLDB, pp. 544–555 (1996)Google Scholar
  8. 8.
    Zaki, M.J., Ho, C.-T., Agrawal, R.: Parallel classification for data mining on shared-memory multiprocessors. In: ICDE, pp. 198–205 (1999)Google Scholar
  9. 9.
    Darlington, J., Guo, Y.-K., Sutiwaraphun, J., To, H.W.: Parallel induction algorithms for data mining. In: Liu, X., Cohen, P., Berthold, M. (eds.) IDA 1997. LNCS, vol. 1280, pp. 437–445. Springer, Heidelberg (1997)Google Scholar
  10. 10.
    Srivastava, A., Han, E.-H., Kumar, V., Singh, V.: Parallel formulations of decision-tree classification algorithms. DMKD 3(3), 237–261 (1999)Google Scholar
  11. 11.
    Kufrin, R.: Decision trees on parallel processors. In: PPAI, pp. 279–306 (1995)Google Scholar
  12. 12.
    Zaki, M.J.: Parallel and distributed association mining: a survey. IEEE Concurrency 7(4), 14–25 (1999)Google Scholar
  13. 13.
    Judd, D., McKinley, P.K., Jain, A.K.: Large-scale parallel data clustering. TPAMI 20(8), 871–876 (1998)Google Scholar
  14. 14.
    Dhillon, I., Modha, D.: A data-clustering algorithm on distributed memory multiprocessors. In: Large-scale Parallel KDD Systems Workshop, ACM SIGKDD, pp. 245–260 (2000)Google Scholar
  15. 15.
    Olson, C.F.: Parallel algorithms for hierarchical clustering. JPC 21, 1313–1325 (1995)Google Scholar
  16. 16.
    Garg, A., Mangla, A., Gupta, N., Bhatnagar, V.: PBIRCH: A scalable parallel clustering algorithm for incremental data. In: IDEAS, pp. 315–316 (2006)Google Scholar
  17. 17.
    Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Commun. ACM 51(1), 107–113 (2008)Google Scholar
  18. 18.
    Chu, C.-T., Kim, S.K., Lin, Y.-A., Yu, Y.Y., Bradski, G.R., Ng, A.Y., Olukotun, K.: Map-reduce for machine learning on multicore. In: NIPS, pp. 281–288 (2006)Google Scholar
  19. 19.
    Ma, Z., Gu, L.: The limitation of MapReduce: A probing case and a lightweight solution. In: Intl. Conf. on Cloud Computing, GRIDs, and Virtualization, pp. 68–73 (2010)Google Scholar
  20. 20.
    Breiman, L.: Bagging predictors. JML 24(2), 123–140 (1996)Google Scholar
  21. 21.
    Schapire, R.E.: The strength of weak learnability. JML 5, 28–33 (1990)Google Scholar
  22. 22.
    Breiman, L.: Random forests. JML 45(1), 5–32 (2001)Google Scholar
  23. 23.
    Talia, D.: Parallelism in knowledge discovery techniques. In: Fagerholm, J., Haataja, J., Järvinen, J., Lyly, M., Råback, P., Savolainen, V. (eds.) PARA 2002. LNCS, vol. 2367, pp. 127–136. Springer, Heidelberg (2002)Google Scholar
  24. 24.
    Shell, P., Rubio, J.A.H., Barro, G.Q.: Improving search through diversity. In: AAAI (1994)Google Scholar
  25. 25.
    Harvey, W.D., Ginsberg, M.L.: Limited discrepancy search. IJCAI, 607–615 (1995)Google Scholar
  26. 26.
    Felner, A., Kraus, S., Korf, R.E.: KBFS: K-best-first search. AMAI 39(1-2), 19–39 (2003)Google Scholar
  27. 27.
    Berger, B., Rompel, J., Shor, P.W.: Efficient nc algorithms for set cover with applications to learning and geometry. JCSS 49(3), 454–477 (1994)Google Scholar
  28. 28.
    Blelloch, G.E., Peng, R., Tangwongsan, K.: Linear-work greedy parallel approximate set cover and variants. In: SPAA, pp. 23–32 (2011)Google Scholar
  29. 29.
    Johnson, D.S.: Approximation algorithms for combinatorial problems. In: STOC, pp. 38–49 (1973)Google Scholar
  30. 30.
    Beasley, J.E.: Or-library: Distributing test problems by electronic mail. The Journal of the Operational Research Society 41(11), 1069–1072 (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Violeta N. Ivanova
    • 1
  • Michael R. Berthold
    • 1
  1. 1.Dept. of CIS and Graduate School Chemical Biology (KoRS-CB)University of KonstanzKonstanzGermany

Personalised recommendations