Advertisement

Reliability Weighted Voting Games

  • Yoram Bachrach
  • Nisarg Shah
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8146)

Abstract

We examine agent failures in weighted voting games. In our cooperative game model, R-WVG, each agent has a weight and a survival probability, and the value of an agent coalition is the probability that its surviving members would have a total weight exceeding a threshold. We propose algorithms for computing the value of a coalition, finding stable payoff allocations, and estimating the power of agents. We provide simulation results showing that on average the stability level of a game increases as the failure probabilities of the agents increase. This conforms to several recent results showing that failures increase stability in cooperative games.

Keywords

Cooperative game theory Weighted voting game Reliability extension Agent failures Stability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aziz, H., Lachish, O., Paterson, M., Savani, R.: Power indices in spanning connectivity games. In: Goldberg, A.V., Zhou, Y. (eds.) AAIM 2009. LNCS, vol. 5564, pp. 55–67. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Bachrach, Y., Markakis, E., Resnick, E., Procaccia, A., Rosenschein, J., Saberi, A.: Approximating power indices: theoretical and empirical analysis. In: AAMAS, pp. 105–122 (2010)Google Scholar
  3. 3.
    Bachrach, Y., Meir, R., Feldman, M., Tennenholtz, M.: Solving cooperative reliability games. In: UAI, pp. 27–34 (2011)Google Scholar
  4. 4.
    Bachrach, Y., Rosenschein, J.: Power in threshold network flow games. In: AAMAS, pp. 106–132 (2009)Google Scholar
  5. 5.
    Bachrach, Y., Elkind, E., Meir, R., Pasechnik, D., Zuckerman, M., Rothe, J., Rosenschein, J.S.: The cost of stability in coalitional games. In: Mavronicolas, M., Papadopoulou, V.G. (eds.) SAGT 2009. LNCS, vol. 5814, pp. 122–134. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Bachrach, Y., Kash, I., Shah, N.: Agent failures in totally balanced games and convex games. In: Goldberg, P.W. (ed.) WINE 2012. LNCS, vol. 7695, pp. 15–29. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  7. 7.
    Bala, V., Goyal, S.: A strategic analysis of network reliability. Review of Economic Design 5(3), 205–228 (2000)CrossRefGoogle Scholar
  8. 8.
    Banzhaf, J.F.: Weighted voting doesn’t work: A mathematical analysis. Rutgers Law Review 19, 317 (1964)Google Scholar
  9. 9.
    Baye, M.R., Kovenock, D., De Vries, C.G.: Rigging the lobbying process: an application of the all-pay auction. The American Economic Review 83(1), 289–294 (1993)Google Scholar
  10. 10.
    Bilbao, J.M.: Cooperative games on combinatorial structures. Kluwer Academic, Boston (2000)CrossRefzbMATHGoogle Scholar
  11. 11.
    Billand, P., Bravard, C., Sarangi, S.: Nash networks with imperfect reliability and heterogeous players. IGTR 13(2), 181–194 (2011)MathSciNetGoogle Scholar
  12. 12.
    Wooldridge, M.: Computational aspects of cooperative game theory. In: O’Shea, J., Nguyen, N.T., Crockett, K., Howlett, R.J., Jain, L.C. (eds.) KES-AMSTA 2011. LNCS (LNAI), vol. 6682, p. 1. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  13. 13.
    Conitzer, V., Sandholm, T.: Computing shapley values, manipulating value division schemes, and checking core membership in multi-issue domains. In: AAAI, pp. 219–225 (2004)Google Scholar
  14. 14.
    Deng, X., Papadimitriou, C.H.: On the complexity of cooperative solution concepts. MOR 19(2), 257–266 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Dubey, P.: On the uniqueness of the shapley value. IJGT 4(3), 131–139 (1975)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Elkind, E., Goldberg, L., Goldberg, P., Wooldridge, M.: On the computational complexity of weighted voting games. Ann. Math. Artif. Intell. 56(2), 109–131 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Fatima, S.S., Wooldridge, M., Jennings, N.R.: A randomized method for the Shapley value for the voting game. In: AAMAS, pp. 955–962 (2007)Google Scholar
  18. 18.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Company (1979)Google Scholar
  19. 19.
    Gillies, D.B.: Some theorems on n-person games. PhD thesis, Princeton University (1953)Google Scholar
  20. 20.
    Kannan, R., Sarangi, S., Iyengar, S.: A simple model for reliable query reporting in sensor networks. In: Information Fusion, pp. 1070–1075 (2002)Google Scholar
  21. 21.
    Matsui, Y., Matsui, T.: A survey of algorithms for calculating power indices of weighted majority games. Journal of the Operations Research Society of Japan 43, 71–86 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Meir, R., Tennenholtz, M., Bachrach, Y., Key, P.: Congestion games with agent failures. In: AAAI, pp. 1401–1407 (2012)Google Scholar
  23. 23.
    Penn, M., Polukarov, M., Tennenholtz, M.: Congestion games with failures. In: EC, pp. 259–268 (2005)Google Scholar
  24. 24.
    Shapley, L.S.: A value for n-person games. In: Contrib. to the Theory of Games, pp. 31–40 (1953)Google Scholar
  25. 25.
    Shapley, L., Shubik, M.: Quasi-cores in a monetary economy with nonconvex preferences. Econometrica: Journal of the Econometric Society, 805–827 (1966)Google Scholar
  26. 26.
    Young, H.: The allocation of funds in lobbying and campaigning. Behavioral Science 23(1), 21–31 (1978)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Yoram Bachrach
    • 1
  • Nisarg Shah
    • 2
  1. 1.Microsoft Research CambridgeUK
  2. 2.Carnegie Mellon UniversityUSA

Personalised recommendations