On Popular Random Assignments

  • Haris Aziz
  • Felix Brandt
  • Paul Stursberg
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8146)


One of the most fundamental and ubiquitous problems in microeconomics and operations research is how to assign objects to agents based on their individual preferences. An assignment is called popular if there is no other assignment that is preferred by a majority of the agents. Popular assignments need not exist, but the minimax theorem implies the existence of a popular random assignment. In this paper, we study the compatibility of popularity with other properties that have been considered in the literature on random assignments, namely efficiency, equal treatment of equals, envy-freeness, and strategyproofness.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abraham, D.K., Irving, R.W., Kavitha, T., Mehlhorn, K.: Popular matchings. SIAM Journal on Computing 37(4), 1030–1034 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Aziz, H., Brandt, F., Brill, M.: On the tradeoff between economic efficiency and strategyproofness in randomized social choice. In: Proc. of 12th AAMAS Conference, pp. 455–462. IFAAMAS (2013)Google Scholar
  3. 3.
    Biró, P., Irving, R.W., Manlove, D.F.: Popular matchings in the marriage and roommates problems. In: Calamoneri, T., Diaz, J. (eds.) CIAC 2010. LNCS, vol. 6078, pp. 97–108. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Bogomolnaia, A., Moulin, H.: A new solution to the random assignment problem. Journal of Economic Theory 100(2), 295–328 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Budish, E., Che, Y.-K., Kojima, F., Milgrom, P.: Designing random allocation mechanisms: Theory and applications. American Economic Review (forthcoming, 2013)Google Scholar
  6. 6.
    Cho, W.J.: Probabilistic assignment: A two-fold axiomatic approach (unpublished manuscript, 2012)Google Scholar
  7. 7.
    Felsenthal, D.S., Machover, M.: After two centuries should Condorcet’s voting procedure be implemented? Behavioral Science 37(4), 250–274 (1992)CrossRefGoogle Scholar
  8. 8.
    Fishburn, P.C.: Probabilistic social choice based on simple voting comparisons. Review of Economic Studies 51(167), 683–692 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Fisher, D.C., Ryan, J.: Tournament games and positive tournaments. Journal of Graph Theory 19(2), 217–236 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Gärdenfors, P.: Match making: Assignments based on bilateral preferences. Behavioral Science 20(3), 166–173 (1975)CrossRefGoogle Scholar
  11. 11.
    Katta, A.-K., Sethuraman, J.: A solution to the random assignment problem on the full preference domain. Journal of Economic Theory 131(1), 231–250 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Kavitha, T.: Popularity vs maximum cardinality in the stable marriage setting. In: Proc. of 23rd SODA, pp. 123–134. ACM Press (2012)Google Scholar
  13. 13.
    Kavitha, T., Mestre, J., Nasre, M.: Popular mixed matchings. Theoretical Computer Science 412(24), 2679–2690 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Kreweras, G.: Aggregation of preference orderings. In: Sternberg, S., Capecchi, V., Kloek, T., Leenders, C. (eds.) Mathematics and Social Sciences I: Proceedings of the Seminars of Menthon-Saint-Bernard, France (July 1-27, 1960), and of Gösing, Austria (July 3-27, 1962), pp. 73–79 (1965)Google Scholar
  15. 15.
    Laffond, G., Laslier, J.-F., Le Breton, M.: The bipartisan set of a tournament game. Games and Economic Behavior 5, 182–201 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Manea, M.: Serial dictatorship and Pareto optimality. Games and Economic Behavior 61, 316–330 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    McCutchen, R.M.: The least-unpopularity-factor and least-unpopularity-margin criteria for matching problems with one-sided preferences. In: Laber, E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds.) LATIN 2008. LNCS, vol. 4957, pp. 593–604. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. 18.
    Moulin, H.: Fair Division and Collective Welfare. The MIT Press (2003)Google Scholar
  19. 19.
    Rivest, R.L., Shen, E.: An optimal single-winner preferential voting system based on game theory. In: Proc. of 3rd International Workshop on Computational Social Choice, pp. 399–410 (2010)Google Scholar
  20. 20.
    Roth, A.E.: Repugnance as a constraint on markets. Journal of Economic Perspectives 21(3), 37–58 (2007)CrossRefGoogle Scholar
  21. 21.
    Young, H.P.: Dividing the indivisible. American Behavioral Scientist 38, 904–920 (1995)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Haris Aziz
    • 1
  • Felix Brandt
    • 2
  • Paul Stursberg
    • 3
  1. 1.NICTA and University of New South WalesSydneyAustralia
  2. 2.Institut für InformatikTechnische Universität MünchenMünchenGermany
  3. 3.Zentrum MathematikTechnische Universität MünchenMünchenGermany

Personalised recommendations