Advertisement

Cooperative Equilibria in Iterated Social Dilemmas

  • Valerio Capraro
  • Matteo Venanzi
  • Maria Polukarov
  • Nicholas R. Jennings
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8146)

Abstract

The implausibility of the extreme rationality assumptions of Nash equilibrium has been attested by numerous experimental studies with human players. In particular, the fundamental social dilemmas such as the Traveler’s dilemma, the Prisoner’s dilemma, and the Public Goods game demonstrate high rates of deviation from the unique Nash equilibrium, dependent on the game parameters or the environment in which the game is played. These results inspired several attempts to develop suitable solution concepts to more accurately explain human behaviour. In this line, the recently proposed notion of cooperative equilibrium [5, 6], based on the idea that players have a natural attitude to cooperation, has shown promising results for single-shot games. In this paper, we extend this approach to iterated settings. Specifically, we define the Iterated Cooperative Equilibrium (ICE) and show it makes statistically precise predictions of population average behaviour in the aforementioned domains. Importantly, the definition of ICE does not involve any free parameters, and so it is fully predictive.

Keywords

Nash Equilibrium Social Dilemma Public Good Game Normal Form Game Unique Nash Equilibrium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Axelrod, R.: The Evolution of Cooperation. Basic Books (1984)Google Scholar
  2. 2.
    Benisch, M., Davis, G.B., Sandholm, T.: Algorithms for rationalizability and CURB sets. In: AAAI 2006, pp. 598–604 (2006)Google Scholar
  3. 3.
    Boyd, R., Gintis, H., Bowles, S., Richerson, P.J.: The evolution of altruistic punishment. Proc. Nat. Acad. Sci. USA 100, 3531–3535 (2003)CrossRefGoogle Scholar
  4. 4.
    Camerer, C., Ho, T., Chong, J.: A cognitive hierarchy model of games. Quaterly J. of Economics 119(3), 861–898 (2004)CrossRefzbMATHGoogle Scholar
  5. 5.
    Capraro, V.: A solution concept for games with altruism and cooperation, http://arxiv.org/pdf/1302.3988v2.pdf
  6. 6.
    Capraro, V.: A Model of Human Cooperation in Social Dilemmas. PLoS ONE (in press), Available at SSRN, http://ssrn.com/abstract=2246094
  7. 7.
    Capra, M., Goeree, J.K., Gomez, R., Holt, C.A.: Anomalous Behavior in a Traveler’s Dilemma? American Economic Review 89(3), 678–690 (1999)CrossRefGoogle Scholar
  8. 8.
    Conitzer, V., Sandholm, T.: A generalized strategy eliminability criterion and computational methods for applying it. In: AAAI 2005, pp. 483–488 (2005)Google Scholar
  9. 9.
    Costa-Gomes, M., Crawford, V., Broseta, B.: Cognition and behavior in normal form games: An experimental study. Econometrica 69(5), 1193–1235 (2001)CrossRefGoogle Scholar
  10. 10.
    Fowler, J.H.: Altruistic punishment and the origin of cooperation. Proc. Nat. Acad. Sci. USA 102, 7047–7049 (2005)CrossRefGoogle Scholar
  11. 11.
    Fudenberg, D., Rand, D.G., Dreber, A.: Slow to Anger and Fast to Forgive: Cooperation in an Uncertain World. American Economic Review 102, 720–749 (2012)CrossRefGoogle Scholar
  12. 12.
    Goeree, J.K., Holt, C.A.: Ten Little Treasures of Game Theory and Ten Intuitive Contradictions. American Economic Review 91, 1402–1422 (2001)CrossRefGoogle Scholar
  13. 13.
    Goeree, J.K., Holt, C.A., Laury, S.K.: Private Costs and Public Benefits: Unraveling the Effects of Altruism and Noisy Behavior. Journal of Public Economics 83(2), 255–276 (2002)CrossRefGoogle Scholar
  14. 14.
    Gunnthorsdottir, A., Houser, D., McCabe, K.: Disposition, History and Contributions in Public Goods Experiments. Journal of Behavior and Organization 62, 304–315 (2007)CrossRefGoogle Scholar
  15. 15.
    Halpern, J.Y., Pass, R.: Iterated Regret Minimization: a new solution concept. Games and Economic Behavior 74(1), 184–207 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Hyafil, N., Boutilier, C.: Regret minimizing equilibria and mechanisms for games with strict type uncertainty. In: UAI 2004, pp. 268–277 (2004)Google Scholar
  17. 17.
    Isaac, M.R., Walker, J.: Group size effects in public goods provision: The voluntary contribution mechanism. Quarterly Journal of Economics 103, 179–200 (1988)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Jamroga, W., Melissen, M.: Doubtful Deviations and Farsighted Play. In: Antunes, L., Pinto, H.S. (eds.) EPIA 2011. LNCS, vol. 7026, pp. 506–520. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  19. 19.
    Manapat, M.L., Rand, D.G., Pawlowitsch, C., Nowak, M.A.: Stochastic evolutionary dynamics resolve the Traveler’s Dilemma. Journal of Theoretical Biology 303, 119–127 (2012)MathSciNetCrossRefGoogle Scholar
  20. 20.
    McKelvey, R., Palfrey, T.: Quantal response equilibria for normal form games. Games and Economic Behavior 10(1), 6–38 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Nowak, M.A., Sigmund, K.: Evolution of indirect reciprocity. Nature 437, 1291–1298 (2005)CrossRefGoogle Scholar
  22. 22.
    Nowak, M.A.: Five rules for the evolution of cooperation. Science 314, 1560–1563 (2006)CrossRefGoogle Scholar
  23. 23.
    Panchanathan, K., Boyd, R.: Indirect reciprocity can stabilize cooperation without the second-order free rider problem. Nature 433, 499–502 (2004)CrossRefGoogle Scholar
  24. 24.
    Rabin, M.: Incorporating Fairness into Game Theory and Economics. American Economic Review LXXXIII, 1281–1302 (1993)Google Scholar
  25. 25.
    Stahl, D., Wilson, P.: Experimental evidence on players’ models of other players. J. Economic Behavior and Organization 25(3), 309–327 (1994)CrossRefGoogle Scholar
  26. 26.
    Renou, L., Schlag, K.H.: Minimax regret and strategic uncertainty. Journal of Economic Theory 145, 264–286 (2009)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Tennenholtz, M.: Competitive safety analysis: Robust decision-making in multi-agent systems. JAIR 17, 363–378 (2002)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Teacy, W.T.L., Patel, J., Jennings, N.R., Luck, M.: Travos: Trust and reputation in the context of inaccurate information sources. Autonomous Agents and Multi-Agent Systems 12, 183–198 (2006)CrossRefGoogle Scholar
  29. 29.
    Trivers, R.L.: The evolution of reciprocal altruism. Q. Rev. Biol. 46, 35–57 (1971)CrossRefGoogle Scholar
  30. 30.
    Wellman, M., Greenwald, A., Stone, P.: Autonomous Bidding Agents: Strategies and Lessons from the Trading Agent Competition. MIT Press (2007)Google Scholar
  31. 31.
    Wright, J.R., Leyton-Brown, K.: Beyond Equilibrium: Predicting Human Behavior in Normal-Form Games. In: AAAI 2010, pp. 901–907 (2010)Google Scholar
  32. 32.
    Yang, C.L., Yue, C.D.J., Yu, I.T.: The rise of cooperation in correlated matching prisoners dilemma: An experiment. Experimental Economics 10, 3–20 (2007)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Valerio Capraro
    • 1
  • Matteo Venanzi
    • 2
  • Maria Polukarov
    • 2
  • Nicholas R. Jennings
    • 2
  1. 1.MathematicsUniversity of SouthamptonUnited Kingdom
  2. 2.Electronics and Computer ScienceUniversity of SouthamptonUnited Kingdom

Personalised recommendations