Fuzzy Data Envelopment Analysis in Composite Indicator Construction

  • Yongjun ShenEmail author
  • Elke Hermans
  • Tom Brijs
  • Geert Wets
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 309)


Data envelopment analysis (DEA) as a performance evaluation methodology has lately received considerable attention in the construction of composite indicators (CIs) due to its prominent advantages over other traditional methods. In this chapter, we present the extension of the basic DEA-based CI model by incorporating fuzzy ranking approach for modeling qualitative data. By interpreting the qualitative indicator data as fuzzy numerical values, a fuzzy DEA-based CI model is developed, and it is applied to construct a composite alcohol performance indicator for road safety evaluation of a set of European countries. Comparisons of the results with the ones from the imprecise DEA-based CI model show the effectiveness of the proposed model in capturing the uncertainties associated with human thinking, and further imply the reliability of using this approach for modeling both quantitative and qualitative data in the context of CI construction.


Alcohol performance index Composite indicators Data envelopment analysis Fuzzy ranking approach Qualitative data  Road safety 


  1. 1.
    Charnes, A., Cooper, W.W., Rhodes, E.: Measuring the efficiency of decision making units. Eur. J. Oper. Res. 2, 429–444 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Adolphson, D.L., Cornia, G.C., Walters, L.C.: A unified framework for classifying DEA models. Operational Research ‘90, pp. 647–657. Pergamon Press, New York (1991)Google Scholar
  3. 3.
    Organisation for Economic Cooperation and Development (OECD), Handbook on constructing composite indicators: methodology and user guide. OECD, Paris (2008)
  4. 4.
    Saisana, M., Tarantola, S.: State-of-the-Art Report on Current Methodologies and Practices for Composite Indicator Development, EUR 20408 EN Report, the Joint Research Center of European Commission, Ispra (2002)Google Scholar
  5. 5.
    Bao, Q., Ruan, D., Shen, Y., Hermans, E., Janssens, D.: Improved hierarchical fuzzy TOPSIS for road safety performance evaluation. Knowl. Based Syst. 32, 84–90 (2012)CrossRefGoogle Scholar
  6. 6.
    Cherchye, L., Moesen, W., Rogge, N., van Puyenbroeck, T.: An introduction to ‘benefit of the doubt’ composite indicators. Soc. Indic. Res. 82, 111–145 (2007)CrossRefGoogle Scholar
  7. 7.
    Shen, Y., Hermans, E., Brijs, T., Wets, G.: Data envelopment analysis for composite indicators: a multiple layer model. Soc. Indic. Res. 114(2), 739–756 (2013)CrossRefGoogle Scholar
  8. 8.
    Färe, R., Grosskopf, S., Hernández-Sancho, F.: Environmental performance: an index number approach. Resour. Energ. Econ. 26, 343–352 (2004)CrossRefGoogle Scholar
  9. 9.
    Despotis, D.K.: Measuring human development via data envelopment analysis: the case of Asia and the Pacific. Omega 33, 385–390 (2005)CrossRefGoogle Scholar
  10. 10.
    Ramanathan, R.: Evaluating the comparative performance of countries of the Middle East and North Africa: a DEA application. Socio-Economic Plann. Sci. 40, 156–167 (2006)CrossRefGoogle Scholar
  11. 11.
    Zhou, P., Ang, B.W., Poh, K.L.: A mathematical programming approach to constructing composite indicators. Ecol. Econ. 62, 291–297 (2007)CrossRefGoogle Scholar
  12. 12.
    Cherchye, L., Moesen, W., Rogge, N., van Puyenbroeck, T., Saisana, M., Saltelli, A., Liska, R., Tarantola, S.: Creating composite indicators with DEA and robustness analysis: the case of the technology achievement index. J. Oper. Res. Soc. 59, 239–251 (2008)CrossRefzbMATHGoogle Scholar
  13. 13.
    Hermans, E., Brijs, T., Wets, G., Vanhoof, K.: Benchmarking road safety: lessons to learn from a data envelopment analysis. Accid. Anal. Prev. 41(1), 174–182 (2009)CrossRefGoogle Scholar
  14. 14.
    Shen, Y., Hermans, E., Ruan, D., Wets, G., Brijs, T., Vanhoof, K.: Evaluating trauma management performance in Europe: a multiple-layer data envelopment analysis model. Transportation Research Record: Journal of the Transportation Research Board 2(2148), 69–75 (2010)CrossRefGoogle Scholar
  15. 15.
    Cooper, W.W., Park, K.S., Yu, G.: An illustrative application of IDEA (Imprecise Data Envelopment Analysis) to a Korean mobile telecommunication company. Oper. Res. 49(6), 807–820 (2002)CrossRefGoogle Scholar
  16. 16.
    Cook, W.D., Zhu, J.: Rank order data in DEA: a general framework. Eur. J. Oper. Res. 174, 1021–1038 (2006)CrossRefzbMATHGoogle Scholar
  17. 17.
    Sengupta, J.K.: A fuzzy systems approach in data envelopment analysis. Comput. Math. Appl. 24(8), 259–266 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Kahraman, C., Tolga, E.: Data envelopment analysis using fuzzy concept. In: Proceedings of the 28th International Symposium on Multiple-Valued Logic, Los Alamitos, pp. 338–343 (1998)Google Scholar
  19. 19.
    Meada, Y., Entani, T., Tanaka, H.: Fuzzy DEA with interval efficiency. In: Proceedings of the 6th European Congress on Intelligent Techniques and Soft Computing, Aachen, vol. 2, pp. 1067–1071 (1998)Google Scholar
  20. 20.
    Lertworasirikul, S.: Fuzzy data envelopment analysis for supply chain modelling and analysis. Dissertation Proposal in Industrial Engineering, North Carolina State University, USA (2001)Google Scholar
  21. 21.
    Lertworasirikul, S., Fang, S.-C., Joines, J.A., Nuttle, H.: Fuzzy data envelopment analysis: a possibility approach. Fuzzy Sets Syst. 139, 379–394 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Guo, P., Tanaka, H.: Fuzzy DEA: a perceptual evaluation method. Fuzzy Sets Syst. 119, 149–160 (2001)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Charnes, A., Cooper, W.W.: The non-Archimedean CCR ratio for efficiency analysis: a rejoinder to Boyd and Fare. Eur. J. Oper. Res. 15(3), 333–334 (1984)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Hatami-Marbini, A., Emrouznejad, A., Tavana, M.: A taxonomy and review of the fuzzy data envelopment analysis literature: two decades in the making. Eur. J. Oper. Res. 214(3), 457–472 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    León, T., Liern, V., Ruiz, J.L., Sirvent, I.: A fuzzy mathematical programming approach to the assessment of efficiency with DEA models. Fuzzy Sets Syst. 139, 407–419 (2003)CrossRefzbMATHGoogle Scholar
  27. 27.
    Inuiguchi, M., Ichihasi, H., Tanaka, H.: Fuzzy programming: a survey of recent developments. In: Slowinski, R., Teghem, J. (eds.) Stochastic Versus Fuzzy Approaches to Multi-objective Mathematical Programming under Uncertainty. Kluwer Academic Publishers, Dordrecht (1990)Google Scholar
  28. 28.
    Hakkert, A.S., Gitelman, V., Vis, M.A. (eds.): Road Safety Performance Indicators: Theory. Deliverable D3.6 of the EU FP6 project SafetyNet (2007)Google Scholar
  29. 29.
    World Health Organization (WHO), Global status report on road safety—time for action. WHO, Geneva (2009)
  30. 30.
    IBM Corp. IBM SPSS missing values 20. (2011)
  31. 31.
    Shen, Y., Ruan, D., Hermans, E., Brijs, T., Wets, G., Vanhoof, K.: Modeling qualitative data in data envelopment analysis for composite indicators. Int. J. Syst. Assur Eng Manag 2(1), 21–30 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Yongjun Shen
    • 1
    Email author
  • Elke Hermans
    • 1
  • Tom Brijs
    • 1
  • Geert Wets
    • 1
  1. 1.Transportation Research Institute (IMOB)Hasselt UniversityDiepenbeekBelgium

Personalised recommendations