Advertisement

Applying the Latent Semantic Analysis to the Issue of Automatic Extraction of Collocations from the Domain Texts

  • Aliya Nugumanova
  • Igor Bessmertny
Part of the Communications in Computer and Information Science book series (CCIS, volume 394)

Abstract

The aim of this paper is to study possibilities of latent semantic analysis for automatic extraction of word pair collocations from domain texts. The basic idea of this work consists in a search of collocations among pairs of words with strong (stable) relations since collocations are nothing else than steady combinations of words. Results of experiments on a corpus of texts from a Russian online newspaper demonstrate that applying latent semantic analysis to collocation extraction significantly decreases information noise and strengthens the words associations. The proposed method will be used for an automatic building thesaurus for a domain.

Keywords

Latent Semantic Analysis Natural Language Processing Collocations Domain Knowledge 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Deerwester, S.C., Dumais, S.T., Landauer, T.K., Furnas, G.W., Harshman, R.A.: Indexing By Latent Semantic Analysis. Journal of the American Society of Information Science 41(6), 391–407 (1990)CrossRefGoogle Scholar
  2. 2.
    Dumais, S.: Enhancing Performance in Latent Semantic Indexing, Behaviour Research Methods. Instruments, & Computers 23(2), 229–236 (1990)CrossRefGoogle Scholar
  3. 3.
    Dumais, S.T.: Latent Semantic Indexing (LSI): TREC-3 Report. In: The 3rd Text Retrieval Conference, vol. 500(226), pp. 219–230. Nist Special Publication (1995)Google Scholar
  4. 4.
    Hofmann, T.: Probabilistic Latent Semantic Indexing. In: The 22nd Annual International SIGIR Conference on Research and Development in Information Retrieval, pp. 50–57 (1999)Google Scholar
  5. 5.
    Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. Journal of Machine Learning Research 3(5), 993–1022 (2003)zbMATHGoogle Scholar
  6. 6.
    Potapenko, A., Vorontsov, K.: Robust PLSA performs better than LDA. In: Serdyukov, P., Braslavski, P., Kuznetsov, S.O., Kamps, J., Rüger, S., Agichtein, E., Segalovich, I., Yilmaz, E. (eds.) ECIR 2013. LNCS, vol. 7814, pp. 784–787. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  7. 7.
    Church, W.K., Hanks, P.: Word association norms, mutual information and lexicography. In: The 27th Meeting of the Association of Computational Linguistics, pp. 76–83 (1989)Google Scholar
  8. 8.
    Church, W.K., Gale, A.W.: Concordance for parallel text. In: The 7th Annual Conference of the UW Centre for New OED and Text Research, Oxford, pp. 40–62 (1991)Google Scholar
  9. 9.
    Lin, D.: Extracting collocations from text corpora. In: Workshop on Computational Terminology, Montreal, Canada, pp. 57–63 (1998)Google Scholar
  10. 10.
    Panchenko, A., Romanov, P., Morozova, O., Naets, H., Philippovich, A., Romanov, A., Fairon, C.: Serelex: Search and Visualization of Semantically Related Words. In: Serdyukov, P., Braslavski, P., Kuznetsov, S.O., Kamps, J., Rüger, S., Agichtein, E., Segalovich, I., Yilmaz, E. (eds.) ECIR 2013. LNCS, vol. 7814, pp. 837–840. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  11. 11.
    De Lathauwer, L., De Moor, B., Vandewalle, J.: A multilinear singular value decomposition. SIAM J. Matrix Anal. Appl. 21(4), 1253–1278 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cambridge University Press (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Aliya Nugumanova
    • 1
  • Igor Bessmertny
    • 2
  1. 1.Eastern Kazakhstan State Technical UniversityOskemenKazakhstan
  2. 2.National Research University of ITMOSaint-PetersburgRussia

Personalised recommendations