Laser Assisted Bio-printing (LAB) of Cells and Bio-materials Based on Laser Induced Forward Transfer (LIFT)

  • Bertrand Guillotin
  • Sylvain Catros
  • Fabien Guillemot
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)


Laser assisted bio-printing (LAB) is an emerging and complementary technology in the field of tissue engineering envisaging biomimetics applications. LAB allows to print cells and liquid materials with a cell-level resolution, which is comparable to the complex histology of living tissues. By giving tissue engineers control on cell density and organization, LAB potentially holds promise to fabricate living tissues with biomimetic physiological functionality. In this chapter, the physical parameters related to laser induced forward transfer (LIFT) technique, which is implemented in the LAB, are presented. These parameters, such as laser pulse energy and bio-ink viscosity are critical to control the cell printing process. They must be tuned according to each other in order to print viable cell patterns with respect to cell-level histological organization. Processing time is a concern when addressing tissue engineering involving living material like cells. Therefore, concerns regarding the design and technical implementation of LAB based rapid prototyping workstation are discussed. Experimental requirements are described in order to fabricate tissues using LAB. Some typical multi-component printing, 3D printing approaches and bio-printing in vivo are presented.


Tissue Engineering Droplet Size Human Umbilical Vein Endothelial Cell Sodium Alginate Tissue Construct 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We acknowledge financial support from GIS-AMA (Advanced Materials in Aquitaine), ANR (Agence Nationale pour la Recherche), and Région Aquitaine.


  1. 1.
    Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21:2529–2543. doi: 10.1016/S0142-9612(00)00121-6 CrossRefGoogle Scholar
  2. 2.
    Mironov V, Boland T, Trusk T et al (2003) Organ printing: computer-aided jet-based 3D tissue engineering. Trends Biotechnol 21:157–161. doi: 10.1016/S0167-7799(03)00033-7 CrossRefGoogle Scholar
  3. 3.
    Jakab K, Norotte C, Marga F et al (2010) Tissue engineering by self-assembly and bio-printing of living cells. Biofabrication 2:022001. doi: 10.1088/1758-5082/2/2/022001 ADSCrossRefGoogle Scholar
  4. 4.
    Mironov V, Visconti RP, Kasyanov V et al (2009) Organ printing: tissue spheroids as building blocks. Biomaterials 30:2164–2174. doi: 10.1016/j.biomaterials.2008.12.084 CrossRefGoogle Scholar
  5. 5.
    Guillemot F, Mironov V, Nakamura M (2010) Bioprinting is coming of age. In: Report from the international conference on bioprinting and biofabrication in Bordeaux (3B’09). Biofabrication 2:010201. doi: 10.1088/1758-5082/2/1/010201
  6. 6.
    Klebe RJ (1988) Cytoscribing: a method for micropositioning cells and the construction of two- and three-dimensional synthetic tissues. Exp Cell Res 179:362–373. doi: 10.1016/0014-4827(88)90275-3 CrossRefGoogle Scholar
  7. 7.
    Klebe RJ, Thomas CA, Grant GM et al (1994) Cytoscription: computer controlled micropositioning of cell adhesion proteins and cells. Methods Cell Sci 16:189–192. doi: 10.1007/BF01540648 Google Scholar
  8. 8.
    Boland T, Xu T, Damon B, Cui X (2006) Application of inkjet printing to tissue engineering. Biotechnol J 1:910–917. doi: 10.1002/biot.200600081 CrossRefGoogle Scholar
  9. 9.
    Nakamura M, Kobayashi A, Takagi F et al (2005) Biocompatible inkjet printing technique for designed seeding of individual living cells. Tissue Eng 11:1658–1666. doi: 10.1089/ten.2005.11.1658 CrossRefGoogle Scholar
  10. 10.
    Saunders RE, Gough JE, Derby B (2008) Delivery of human fibroblast cells by piezoelectric drop-on-demand inkjet printing. Biomaterials 29:193–203. doi: 10.1016/j.biomaterials.2007.09.032 CrossRefGoogle Scholar
  11. 11.
    Brisbane (1971) Pattern Deposit by Laser-Google PatentsGoogle Scholar
  12. 12.
    Young D, Auyeung RCY, Piqué A et al (2002) Plume and jetting regimes in a laser based forward transfer process as observed by time-resolved optical microscopy. Appl Surf Sci 197–198:181–187. doi: 10.1016/S0169-4332(02)00322-7 CrossRefGoogle Scholar
  13. 13.
    Bohandy J, Kim BF, Adrian FJ, (Aug1986) Metal deposition from a supported metal film using an excimer laser. J Appl Phys 60:1538–1539Google Scholar
  14. 14.
    Schiele NR, Corr DT, Huang Y et al (2010) Laser-based direct-write techniques for cell printing. Biofabrication 2:032001. doi: 10.1088/1758-5082/2/3/032001 ADSCrossRefGoogle Scholar
  15. 15.
    Guillemot F, Souquet A, Catros S, Guillotin B (2010) Laser-assisted cell printing: principle, physical parameters versus cell fate and perspectives in tissue engineering. Nanomed 5:507–515. doi: 10.2217/nnm.10.14 CrossRefGoogle Scholar
  16. 16.
    Barron JA, Krizman DB, Ringeisen BR (2005) Laser printing of single cells: statistical analysis, cell viability, and stress. Ann Biomed Eng 33:121–130CrossRefGoogle Scholar
  17. 17.
    Barron JA, Wu P, Ladouceur HD, Ringeisen BR (2004) Biological laser printing: a novel technique for creating heterogeneous 3-dimensional cell patterns. Biomed Microdevices 6:139–147CrossRefGoogle Scholar
  18. 18.
    Guillotin B, Souquet A, Catros S et al (2010) Laser assisted bioprinting of engineered tissue with high cell density and microscale organization. Biomaterials 31:7250–7256. doi: 10.1016/j.biomaterials.2010.05.055 CrossRefGoogle Scholar
  19. 19.
    McGuigan AP, Sefton MV (2006) Vascularized organoid engineered by modular assembly enables blood perfusion. Proc Natl Acad Sci 103:11461–11466. doi: 10.1073/pnas.0602740103 ADSCrossRefGoogle Scholar
  20. 20.
    McGuigan AP, Bruzewicz DA, Glavan A et al (2008) Cell encapsulation in sub-mm sized gel modules using replica molding. Plos One 3:e2258. doi: 10.1371/journal.pone.0002258 ADSCrossRefGoogle Scholar
  21. 21.
    Voldman J (2006) Engineered systems for the physical manipulation of single cells. Curr Opin Biotechnol 17:532–537. doi: 10.1016/j.copbio.2006.07.001 CrossRefGoogle Scholar
  22. 22.
    Wu PK, Ringeisen BR (2010) Development of human umbilical vein endothelial cell (HUVEC) and human umbilical vein smooth muscle cell (HUVSMC) branch/stem structures on hydrogel layers via biological laser printing (BioLP). Biofabrication 2:014111. doi: 10.1088/1758-5082/2/1/014111 ADSCrossRefGoogle Scholar
  23. 23.
    Gaebel R, Ma N, Liu J et al (2011) Patterning human stem cells and endothelial cells with laser printing for cardiac regeneration. Biomaterials 32(35):9218–9230Google Scholar
  24. 24.
    Koch L, Kuhn S, Sorg H et al (2009) Laser printing of skin cells and human stem cells. Tissue Eng Part C Methods 091221133515000: doi: 10.1089/ten.tec.2009.0397
  25. 25.
    Gruene M, Deiwick A, Koch L et al (2010) Laser printing of stem cells for biofabrication of scaffold-free autologous grafts. Tissue Eng Part C Methods 17:79–87. doi: 10.1089/ten.tec.2010.0359 Google Scholar
  26. 26.
    Gruene M, Pflaum M, Hess C et al (2011) Laser printing of three-dimensional multicellular arrays for studies of cell-cell and cell-environment interactions. Tissue Eng Part C Methods 110629135038006: doi: 10.1089/ten.tec.2011.0185
  27. 27.
    Catros S, Fricain J-C, Guillotin B et al (2011) Laser-assisted bioprinting for creating on-demand patterns of human osteoprogenitor cells and nano-hydroxyapatite. Biofabrication 3:025001. doi: 10.1088/1758-5082/3/2/025001 ADSCrossRefGoogle Scholar
  28. 28.
    Duncan AC, Weisbuch F, Rouais F et al (2002) Laser microfabricated model surfaces for controlled cell growth. Biosens Bioelectron 17:413–426CrossRefGoogle Scholar
  29. 29.
    Claeyssens F, Hasan EA, Gaidukeviciute A et al (2009) Three-dimensional biodegradable structures fabricated by two-photon polymerization. Langmuir 25:3219–3223CrossRefGoogle Scholar
  30. 30.
    Lazare S, Tokarev V, Sionkowska A, Wiśniewski M (2005) Surface foaming of collagen, chitosan and other biopolymer films by KrF excimer laser ablation in the photomechanical regime. Appl Phys Mater Sci Process 81:465–470. doi: 10.1007/s00339-005-3260-y ADSCrossRefGoogle Scholar
  31. 31.
    Duocastella M, Colina M, Fernandez-Pradas JM et al (2007) Study of the laser-induced forward transfer of liquids for laser bioprinting. Appl Surf Sci 253:7855–7859. doi: 10.1016/j.apsusc.2007.02.097 ADSCrossRefGoogle Scholar
  32. 32.
    Duocastella M, Fernández-Pradas JM, Serra P, Morenza JL (2008) Jet formation in the laser forward transfer of liquids. Appl Phys 93:453–456. doi: 10.1007/s00339-008-4781-y CrossRefGoogle Scholar
  33. 33.
    Mezel C, Hallo L, Souquet A et al (2009) Self-consistent modeling of jet formation process in the nanosecond laser pulse regime. Phys Plasmas 16:123112. doi: 10.1063/1.3276101 ADSCrossRefGoogle Scholar
  34. 34.
    Brown MS, Kattamis NT, Arnold CB (2010) Time-resolved study of polyimide absorption layers for blister-actuated laser-induced forward transfer. J Appl Phys 107:083103. doi: 10.1063/1.3327432 ADSCrossRefGoogle Scholar
  35. 35.
    Duocastella M, Fernández-Pradas JM, Morenza JL et al (2010) Novel laser printing technique for miniaturized biosensors preparation. Sensors Actuators B Chem 145:596–600. doi: 10.1016/j.snb.2009.11.055 CrossRefGoogle Scholar
  36. 36.
    Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689. doi: 51 CrossRefGoogle Scholar
  37. 37.
    Engler AJ, Humbert PO, Wehrle-Haller B, Weaver VM (2009) Multiscale modeling of form and function. Science 324:208–212. doi: 10.1126/science.1170107 ADSCrossRefGoogle Scholar
  38. 38.
    Catros S, Guillotin B, Bacáková M et al (2011) Effect of laser energy, substrate film thickness and bioink viscosity on viability of endothelial cells printed by Laser-Assisted Bioprinting. Appl Surf Sci 257:5142–5147. doi: 10.1016/j.apsusc.2010.11.049 ADSCrossRefGoogle Scholar
  39. 39.
    Gruene M, Pflaum M, Deiwick A et al (2011) Adipogenic differentiation of laser-printed 3D tissue grafts consisting of human adipose-derived stem cells. Biofabrication 3:015005. doi: 10.1088/1758-5082/3/1/015005 ADSCrossRefGoogle Scholar
  40. 40.
    Schiele NR, Koppes RA, Corr DT et al (2009) Laser direct writing of combinatorial libraries of idealized cellular constructs: biomedical applications. Appl Surf Sci 255:5444–5447. doi: 10.1016/j.apsusc.2008.10.054 ADSCrossRefGoogle Scholar
  41. 41.
    Raof NA, Schiele NR, Xie Y et al (2011) The maintenance of pluripotency following laser direct-write of mouse embryonic stem cells. Biomaterials 32:1802–1808. doi: 10.1016/j.biomaterials.2010.11.015 CrossRefGoogle Scholar
  42. 42.
    Othon CM, Wu X, Anders JJ, Ringeisen BR (2008) Single-cell printing to form three-dimensional lines of olfactory ensheathing cells. Biomed Mater 3:034101CrossRefGoogle Scholar
  43. 43.
    Ringeisen BR, Kim H, Barron JA et al (2004) Laser printing of pluripotent Embryonal Carcinoma cells. Tissue Eng 10:483–491CrossRefGoogle Scholar
  44. 44.
    Wang W, Huang Y, Grujicic M, Chrisey DB (2008) Study of impact-induced mechanical effects in cell direct writing using smooth particle hydrodynamic method. J Manuf Sci Eng 130:021012. doi: 10.1115/1.2896118 CrossRefGoogle Scholar
  45. 45.
    Hopp B, Smausz T, Kresz N et al (2005) Survival and proliferative ability of various living cell types after laser-induced forward transfer. Tissue Eng 11:1817–1823. doi: 32 CrossRefGoogle Scholar
  46. 46.
    Guillotin B, Guillemot F (2011) Cell patterning technologies for organotypic tissue fabrication. Trends Biotechnol 29:183–190. doi: 10.1016/j.tibtech.2010.12.008 CrossRefGoogle Scholar
  47. 47.
    Guillemot F, Souquet A, Catros S et al (2010) High-throughput laser printing of cells and biomaterials for tissue engineering. Acta Biomater 6:2494–2500. doi: 10.1016/j.actbio.2009.09.029 CrossRefGoogle Scholar
  48. 48.
    Moon S, Hasan SK, Song YS et al (2010) Layer bylayer three-dimensional tissue epitaxy by cell-laden hydrogel droplets. Tissue Eng Part C Methods 16:157–166. doi: 10.1089/ten.tec.2009.0179 Google Scholar
  49. 49.
    Lee W, Debasitis JC, Lee VK et al (2009) Multi-layered culture of human skin fibroblasts and keratinocytes through three-dimensional freeform fabrication. Biomaterials 30:1587–1595. doi: 10.1016/j.biomaterials.2008.12.009 CrossRefGoogle Scholar
  50. 50.
    Lee W, Pinckney J, Lee V et al (2009) Three-dimensional bioprinting of rat embryonic neural cells. NeuroReport 20:798–803. doi: 10.1097/WNR.0b013e32832b8be4 CrossRefGoogle Scholar
  51. 51.
    Catros S, Guillemot F, Nandakumar A et al (2012) Layer-by-layer tissue microfabrication supports cell proliferation in vitro and in vivo. Tissue Eng Part C Methods 18:62–70. doi: 10.1089/ten.TEC.2011.0382 Google Scholar
  52. 52.
    Pirlo RK, Wu P, Liu J, Ringeisen B (2012) PLGA/hydrogel biopapers as a stackable substrate for printing HUVEC networks via BioLP. Biotechnol Bioeng 109:262–273. doi: 10.1002/bit.23295 CrossRefGoogle Scholar
  53. 53.
    Lutolf MP, Blau HM (2009) Artificial stem cell Niches. Adv Mater 21:3255–3268. doi: 10.1002/adma.200802582 CrossRefGoogle Scholar
  54. 54.
    Keriquel V, Guillemot F, Arnault I et al (2010) In vivo bioprinting for computer—and robotic-assisted medical intervention: preliminary study in mice. Biofabrication 2:014101. doi: 10.1088/1758-5082/2/1/014101 ADSCrossRefGoogle Scholar
  55. 55.
    Nelson CM, Tien J (2006) Microstructured extracellular matrices in tissue engineering and development. Curr Opin Biotechnol 17:518–523. doi: 10.1016/j.copbio.2006.08.011 CrossRefGoogle Scholar
  56. 56.
    Nelson CM (2009) Geometric control of tissue morphogenesis. Biochim Biophys Acta Bba-Mol Cell Res 1793:903–910. doi: 10.1016/j.bbamcr.2008.12.014 CrossRefGoogle Scholar
  57. 57.
    Baker RE, Gaffney EA, Maini PK (2008) Partial differential equations for self-organization in cellular and developmental biology. Nonlinearity 21:R251–R290. doi: 10.1088/0951-7715/21/11/R05 ADSCrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Bertrand Guillotin
    • 1
    • 2
  • Sylvain Catros
    • 1
    • 2
  • Fabien Guillemot
    • 1
    • 2
  1. 1.Bioingénierie Tissulaire, INSERM U1026BordeauxFrance
  2. 2.Université Bordeaux SegalenBordeauxFrance

Personalised recommendations