Biomimetic Photonic Materials by Direct Laser Writing

  • Mark D. Turner
  • Gerd E. Schröder-Turk
  • Min Gu
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)


Direct laser writing is a nanofabrication method used to develop three-dimensional nanostructures with almost arbitrary geometry. The fabrication of nanophotonic devices has been the major application of this technology to date. However, recent growth in the adoption of this technology and even commercialization of direct laser writing systems has extended the access of this nanofabrication method to a broader range of researchers including those in the fields of biology and biomimetics. In this review chapter the direct laser writing method and its recent application in developing biomimetic photonic materials are introduced.


Circular Dichroism Electron Beam Lithography Direct Laser Writing Germanium Oxide Wing Scale 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We would like to thank Michael Thiel for the photographs and electron microscopy images of the Callophrys rubi. This work was conducted by the Australian Research Council Centre of Excellence for Ultrahigh Bandwidth Devices for Optics Systems (project CE110001018).


  1. 1.
    Yan YY, Gao N, Barthlott W (2011) Mimicking natural superhydrophobic surfaces and grasping the wetting process: a review on recent progress in preparing superhydrophobic surfaces. Adv Colloid Interfac 169:80–105Google Scholar
  2. 2.
    Huber G, Mantz H, Spolenak R, Mecke K, Jacobs K, Gorb SN, Arzt E (2005) Evidence for capillarity contributions to gecko adhesion from single spatula nanomechanical measurements. Proc Natl Acad Sci USA 102:16293–16296ADSGoogle Scholar
  3. 3.
    Parker AR, Townley HE (2007) Biomimetics of photonic nanostructures. Nat Nanotechnol 2:347–353ADSGoogle Scholar
  4. 4.
    Kolle M, Salgard-Cunha PM, Scherer MRJ, Huang F, Vukusic P, Mahajan S, Baumberg JJ, Steiner U (2010) Mimicking the colourful wing scale structure of the Papilio blumei butterfly. Nat Nanotechnol 5:511–515ADSGoogle Scholar
  5. 5.
    Hallam BT, Hiorns AG, Vukusic P (2009) Developing optical efficiency through optimized coating structure: biomimetic inspiration from white beetles. Appl Opt 48:3243–3249ADSGoogle Scholar
  6. 6.
    Midgley PA, Dunin-Borkowski RE (2009) Electron tomography and holography in materials science. Nat Mater 8:271–280ADSGoogle Scholar
  7. 7.
    Broers AN, Hoole ACF, Ryan JM (1996) Electron beam lithography–resolution limits. Microelectron Eng 32:131–142Google Scholar
  8. 8.
    Nicoletti E, Bulla D, Luther-Davies B, Gu M (2011) Generation of lambda/12 nanowires in chalcogenide glasses. Nano Lett 11:4218–4221ADSGoogle Scholar
  9. 9.
    Michielsen K, Stavenga DG (2008) Gyroid cuticular structures in butterfly wing scales: biological photonic crystals. J R Soc Interface 5:85–94Google Scholar
  10. 10.
    Prum RO, Quinn T, Torres RH (2006) Anatomically diverse butterfly scales all produce structural colours by coherent scattering. J Exp Biol 209:748–765Google Scholar
  11. 11.
    Seago AE, Brady P, Vigneron JP, Schultz TD (2009) Gold bugs and beyond: a review of iridescence and structural colour mechanisms in beetles (Coleoptera). J R Soc Interface 6:S165–S184Google Scholar
  12. 12.
    Wilts BD, Michielsen K, Kuipers J, De Raedt H, Stavenga DG (2012) Brilliant camouflage: photonic crystals in the diamond weevil, Entimus imperialis. Proc R Soc B 279:2524–2530Google Scholar
  13. 13.
    Stavenga DG, Leertouwer HL, Marshall NJ, Osorio D (2011) Dramatic colour changes in a bird of paradise caused by uniquely structured breast feather barbules. Proc R Soc B 278:2098–2104Google Scholar
  14. 14.
    Parker AR, McPhedran RC, McKenzie DR, Botten LC, Nicorovici N-AP (2001) Photonic engineering: Aphrodite’s iridescence. Nature 409:36–37ADSGoogle Scholar
  15. 15.
    Parker AR (2000) 515 million years of structural colour. J Opt A: Pure Appl Opt 2:R15–R28ADSGoogle Scholar
  16. 16.
    Vukusic P, Sambles JR (2003) Photonic structures in biology. Nature 424:852–855ADSGoogle Scholar
  17. 17.
    Srinivasarao M (1999) Nanooptics in the biological world: beetles, butterflies, birds, and moths. Chem Rev 99:1935–1962Google Scholar
  18. 18.
    Kinoshita S, Yoshioka S (2005) Structural colors in biological systems: principles and applications. Osaka University Press, OsakaGoogle Scholar
  19. 19.
    Bosi SG, Hayes J, Large MCJ, Poladian L (2008) Color, iridescence, and thermoregulation in Lepidoptera. Appl Opt 47:5235–5241ADSGoogle Scholar
  20. 20.
    Vukusic P, Sambles JR, Lawrence CR, Wootton RJ (1999) Quantified interference and diffraction in single morpho butterfly scales. Proc R Soc Lond B 266:1403–1411Google Scholar
  21. 21.
    Poladian L, Wickham S, Lee K, Large MCJ (2009) Iridescence from photonic crystals and its suppression in butterfly scales. J R Soc Interface 6:S233–S242Google Scholar
  22. 22.
    Wilson SJ, Hutley MC (1982) The optical properties of “moth eye” antireflection surfaces. Opt Acta 29:993–1009ADSGoogle Scholar
  23. 23.
    Horváth G, Varjú D (2003) Polarized light in animal vision. Springer, BerlinGoogle Scholar
  24. 24.
    Marshall J, Cronin TW (2011) Polarization vision. Curr Biol 21:R101–R105Google Scholar
  25. 25.
    Kleinlogel S, White AG (2008) The secret world of shrimps: polarization vision at its best. PLoS ONE 3:e2190ADSGoogle Scholar
  26. 26.
    Schoen AH (1970) Infinite periodic minimal surfaces without self-intersections. NASAGoogle Scholar
  27. 27.
    Delgado Friedrichs O, O’Keeffe M, Yaghi OM (2003) Three-periodic nets and tilings: semiregular nets. Acta Crystallogr A 59:515–525MathSciNetGoogle Scholar
  28. 28.
    Pringle GE (1972) The structure of SrSi\(_2\): a crystal of class O(432). Acta Crystallogr B 28:2326–2328Google Scholar
  29. 29.
    Schröder-Turk GE, Wickham S, Averdunk H, Brink F, Fitz Gerald JD, Poladian L, Large MCJ, Hyde ST (2011) The chiral structure of porous chitin within the wing-scales of Callophrys rubi. J Struct Biol 174:290–295Google Scholar
  30. 30.
    Saranathan V, Osuji CO, Mochrie SGJ, Noh H, Narayanan S, Sandy A, Dufresne ER, Prum RO (2010) Structure, function, and self-assembly of single network gyroid (I4132) photonic crystals in butterfly wing scales. P Natl Acad Sci USA 107:11676–11681ADSGoogle Scholar
  31. 31.
    Saba M, Thiel M, Turner MD, Hyde ST, Gu M, Grosse-Brauckmann K, Neshev DN, Mecke K, Schröder-Turk GE (2011) Circular dichroism in biological photonic crystals and cubic chiral nets. Phys Rev Lett 106:103902ADSGoogle Scholar
  32. 32.
    Galusha JW, Richey LR, Gardner JS, Cha JN, Bartl MH (2008) Discovery of a diamond-based photonic crystal structure in beetle scales. Phys Rev E 77:050904ADSGoogle Scholar
  33. 33.
    Dufresne ER, Noh H, Saranathan V, Mochrie SGJ, Cao H, Prum RO (2009) Self-assembly of amorphous biophotonic nanostructures by phase separation. Soft Matter 5:1792–1795ADSGoogle Scholar
  34. 34.
    Brady P, Cummings M (2010) Differential response to circularly polarized light by the jewel scarab beetle Chrysina gloriosa. Am Nat 175:614–620Google Scholar
  35. 35.
    Neville AC, Luke BM (1971) Form optical activity in crustacean cuticle. J Insect Physiol 17:519–526Google Scholar
  36. 36.
    Hegedüs R, Szél G, Horváth G (2006) Imaging polarimetry of the circularly polarizing cuticle of scarab beetles (Coleoptera: Rutelidae, Cetoniidae). Vision Res 46:2786–2797Google Scholar
  37. 37.
    Turner MD, Schröder-Turk GE, Gu M (2011) Fabrication and characterization of three-dimensional biomimetic chiral composites. Opt Express 19:10001–10008Google Scholar
  38. 38.
    Hendry E, Cornelius T, Johnston J, Popland M, Mikhaylovskiy RV, Lapthorn AJ, Kelly SM, Barron LD, Gadegaard N, Kadodwala M (2010) Ultrasensitive detection and characterization of biomolecules using superchiral fields. Nat Nanotechnol 5:783–787ADSGoogle Scholar
  39. 39.
    Decker M, Klein MW, Wegener M, Linden S (2007) Circular dichroism of planar chiral magnetic metamaterials. Opt Lett 32:856–858ADSGoogle Scholar
  40. 40.
    Plum E, Zhou J, Dong J, Fedotov VA, Koschny T, Soukoulis CM, Zheludev NI (2009) Metamaterial with negative index due to chirality. Phys Rev B 79:035407ADSGoogle Scholar
  41. 41.
    Thiel M, Rill MS, Freymann G, Wegener M (2009) Three-dimensional bi-chiral photonic crystals. Adv Mater 21:4680–4682Google Scholar
  42. 42.
    Andryieuski A, Menzel C, Rockstuhl C, Malureanu R, Lederer F, Lavrinenko A (2010) Homogenization of resonant chiral metamaterials. Phys Rev B 82:235107ADSGoogle Scholar
  43. 43.
    Hur K, Francescato Y, Giannini V, Maier SA, Hennig RG, Wiesner U (2011) Three-dimensionally isotropic negative refractive index materials from block copolymer self-assembled chiral gyroid networks. Angew Chem 123:12191–12195Google Scholar
  44. 44.
    Liu M, Zentgraf T, Liu Y, Bartal G, Zhang X (2010) Light-driven nanoscale plasmonic motors. Nat Nanotechnol 5:570–573ADSGoogle Scholar
  45. 45.
    Kuwata-Gonokami M, Saito N, Ino Y, Kauranen M, Jefimovs K, Vallius T, Turunen J, Svirko Y (2005) Giant optical activity in quasi-two-dimensional planar nanostructures. Phys Rev Lett 95:227401ADSGoogle Scholar
  46. 46.
    Decker M, Ruther M, Kriegler CE, Zhou J, Soukoulis CM, Linden S, Wegener M (2009) Strong optical activity from twisted-cross photonic metamaterials. Opt Lett 34:2501–2503ADSGoogle Scholar
  47. 47.
    Decker M, Zhao R, Soukoulis CM, Linden S, Wegener M (2010) Twisted split-ring-resonator photonic metamaterial with huge optical activity. Opt Lett 35:1593–1595ADSGoogle Scholar
  48. 48.
    Gansel JK, Thiel M, Rill MS, Decker M, Bade K, Saile V, von Freymann G, Linden S, Wegener M (2009) Gold helix photonic metamaterial as broadband circular polarizer. Science 325:1513–1515ADSGoogle Scholar
  49. 49.
    Zhou J, Dong J, Wang B, Koschny T, Kafesaki M, Soukoulis CM (2009) Negative refractive index due to chirality. Phys Rev B 79:121104ADSGoogle Scholar
  50. 50.
    Pendry JB (2004) A chiral route to negative refraction. Science 306:1353–1355ADSGoogle Scholar
  51. 51.
    Tretyakov S, Nefedov I, Sihvola A, Maslovski S, Simovski C (2003) Waves and energy in chiral nihility. J Electromagnet Wave 17:695–706Google Scholar
  52. 52.
    Helgert C, Pshenay-Severin E, Falkner M, Menzel C, Rockstuhl C, Kley E-B, Tünnermann A, Lederer F, Pertsch T (2011) Chiral metamaterial composed of three-dimensional plasmonic nanostructures. Nano Lett 11:4400–4404ADSGoogle Scholar
  53. 53.
    Melissinaki V, Gill AA, Ortega I, Vamvakaki M, Ranella A, Haycock JW, Fotakis C, Farsari M, Claeyssens F (2011) Direct laser writing of 3D scaffolds for neural tissue engineering applications. Biofabrication 3:045005ADSGoogle Scholar
  54. 54.
    Ovsianikov A, Deiwick A, Van Vlierberghe S, Dubruel P, Möller L, Dräger G, Chichkov B (2011) Laser fabrication of three-dimensional CAD scaffolds from photosensitive gelatin for applications in tissue engineering. Biomacromolecules 12:851–858Google Scholar
  55. 55.
    Klein F, Striebel T, Fischer J, Jiang Z, Franz CM, von Freymann G, Wegener M, Bastmeyer M (2010) Elastic fully three-dimensional microstructure scaffolds for cell force measurements. Adv Mater 22:868–871Google Scholar
  56. 56.
    Kam DH, Mazumder J (2008) Three-dimensional biomimetic microchannel network by laser direct writing. J Laser Appl 20:185–191Google Scholar
  57. 57.
    Maruo S, Nakamura O, Kawata S (1997) Three-dimensional microfabrication with two-photon-absorbed photopolymerization. Opt Lett 22:132–134ADSGoogle Scholar
  58. 58.
    Straub M, Ventura M, Gu M (2003) Multiple higher-order stop gaps in infrared polymer photonic crystals. Phys Rev Lett 91:043901ADSGoogle Scholar
  59. 59.
    Straub M, Gu M (2002) Near-infrared photonic crystals with higher-order bandgaps generated by two-photon photopolymerization. Opt Lett 27:1824–1826ADSGoogle Scholar
  60. 60.
    Gu M, Jia B, Li J, Ventura MJ (2010) Fabrication of three-dimensional photonic crystals in quantum-dot-based materials. Laser Photonics Rev 4:414–431Google Scholar
  61. 61.
    Thiel M, Fischer J, von Freymann G, Wegener M (2010) Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm. Appl Phys Lett 97:221102ADSGoogle Scholar
  62. 62.
    Sun H-B, Xu Y, Matsuo S, Misawa H (1999) Microfabrication and characteristics of two-dimensional photonic crystal structures in vitreous silica. Opt Rev 6:396–398Google Scholar
  63. 63.
    Cao Y, Takeyasu N, Tanaka T, Duan X, Kawata S (2009) 3D metallic nanostructure fabrication by surfactant-assisted multiphoton-induced reduction. Small 5:1144–1148Google Scholar
  64. 64.
    Ovsianikov A, Viertl J, Chichkov B et al (2008) Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication. ACS Nano 2:2257–2262Google Scholar
  65. 65.
    Nicoletti E, Zhou G, Jia B, Ventura MJ, Bulla D, Luther-Davies B, Gu M (2008) Observation of multiple higher-order stopgaps from three-dimensional chalcogenide glass photonic crystals. Opt Lett 33:2311–2313ADSGoogle Scholar
  66. 66.
    Jia B, Buso D, van Embden J, Li J, Gu M (2010) Highly non-linear quantum dot doped nanocomposites for functional three-dimensional structures generated by two-photon polymerization. Adv Mater 22:2463–2467Google Scholar
  67. 67.
    Ventura MJ, Gu M (2008) Engineering spontaneous emission in a quantum-dot-doped polymer nanocomposite with three-dimensional photonic crystals. Adv Mater 20:1329–1332Google Scholar
  68. 68.
    Staude I, Thiel M, Essig S, Wolff C, Busch K, von Freymann G, Wegener M (2010) Fabrication and characterization of silicon woodpile photonic crystals with a complete bandgap at telecom wavelengths. Opt Lett 35:1094–1096Google Scholar
  69. 69.
    Li J, Jia B, Zhou G, Gu M (2006) Fabrication of three-dimensional woodpile photonic crystals in a PbSe quantum dot composite material. Opt Express 14:10740–10745ADSGoogle Scholar
  70. 70.
    Formanek F, Takeyasu N, Tanaka T, Chiyoda K, Ishikawa A, Kawata S (2006) Selective electroless plating to fabricate complex three-dimensional metallic micro/nanostructures. Appl Phys Lett 88:083110ADSGoogle Scholar
  71. 71.
    Malureanu R, Zalkovskij M, Andryieuski A, Lavrinenko AV (2010) Controlled Ag electroless deposition in bulk structures with complex three-dimensional profiles. J Electrochem Soc 157:K284–K288Google Scholar
  72. 72.
    Radke A, Gissibl T, Klotzbücher T, Braun PV, Giessen H (2011) Three-dimensional bichiral plasmonic crystals fabricated by direct laser writing and electroless silver plating. Adv Mater 23:3018–3021Google Scholar
  73. 73.
    Chen Y-S, Tal A, Kuebler SM (2007) Route to three-dimensional metallized microstructures using cross-linkable epoxide SU-8. Chem Mater 19:3858–3860Google Scholar
  74. 74.
    Bückmann T, Stenger N, Kadic M, Kaschke J, Frölich A, Kennerknecht T, Eberl C, Thiel M, Wegener M (2012) Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography. Adv Mater 24:2710–2714Google Scholar
  75. 75.
    Serbin J, Gu M (2006) Experimental evidence for superprism effects in three-dimensional polymer photonic crystals. Adv Mater 18:221–224Google Scholar
  76. 76.
    Sun H-B, Tanaka T, Kawata S (2002) Three-dimensional focal spots related to two-photon excitation. Appl Phys Lett 80:3673–3675ADSGoogle Scholar
  77. 77.
    Cumming BP, Jesacher A, Booth MJ, Wilson T, Gu M (2011) Adaptive aberration compensation for three-dimensional micro-fabrication of photonic crystals in lithium niobate. Opt Express 19:9419–9425ADSGoogle Scholar
  78. 78.
    Scott TF, Kowalski BA, Sullivan AC, Bowman CN, McLeod RR (2009) Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography. Science 324:913–917ADSGoogle Scholar
  79. 79.
    Li L, Gattass RR, Gershgoren E, Hwang H, Fourkas JT (2009) Achieving lambda/20 resolution by one-color initiation and deactivation of polymerization. Science 324:910–913ADSGoogle Scholar
  80. 80.
    Fischer J, von Freymann G, Wegener M (2010) The materials challenge in diffraction-unlimited direct-laser-writing optical lithography. Adv Mater 22:3578–3582Google Scholar
  81. 81.
    Fischer J, Wegener M (2011) Three-dimensional direct laser writing inspired by stimulated-emission-depletion microscopy [Invited]. Opt Mater Express 1:614–624Google Scholar
  82. 82.
    Cao Y, Gan Z, Jia B, Evans RA, Gu M (2011) High-photosensitive resin for super-resolution direct-laser-writing based on photoinhibited polymerization. Opt Express 19:19486–19494ADSGoogle Scholar
  83. 83.
    Hell SW, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett 19:780–782ADSGoogle Scholar
  84. 84.
    Ovsianikov A, Shizhou X, Farsari M, Vamvakaki M, Fotakis C, Chichkov BN (2009) Shrinkage of microstructures produced by two-photon polymerization of Zr-based hybrid photosensitive materials. Opt Express 17:2143–2148ADSGoogle Scholar
  85. 85.
    Deubel M, von Freymann G, Wegener M, Pereira S, Busch K, Soukoulis CM (2004) Direct laser writing of three-dimensional photonic-crystal templates for telecommunications. Nat Mater 3:444–447ADSGoogle Scholar
  86. 86.
    Thiel M, Decker M, Deubel M, Wegener M, Linden S, von Freymann G (2007) Polarization stop bands in chiral polymeric three-dimensional photonic crystals. Adv Mater 19:207–210Google Scholar
  87. 87.
    Heesch H, Laves F (1933) Über dünne kugelpackungen. Z Kristallogr 85:443–453Google Scholar
  88. 88.
    Wells AF (1954) The geometrical basis of crystal chemistry. Part 1. Acta Crystallographica 7:535–544Google Scholar
  89. 89.
    Wells AF (1977) Three-dimensional nets and polyhedra. Wiley, New YorkGoogle Scholar
  90. 90.
    Luzzati V, Spegt PA (1967) Polymorphism of lipids. Nature 215:701–704ADSGoogle Scholar
  91. 91.
    Luzzati V, Taredieu A, Gulik-Krzywicki T, Rivas E, Reiss-Husson F (1968) Structure of the cubic phases of lipid-water systems. Nature 220:485–488ADSGoogle Scholar
  92. 92.
    Alexandridis P, Olsson U, Lindman B (1998) A record nine different phases (four cubic, two hexagonal, and one lamellar lyotropic liquid crystalline and two micellar solutions) in a ternary isothermal system of an amphiphilic block copolymer and selective solvents (water and oil). Langmuir 14:2627–2638Google Scholar
  93. 93.
    Hajduk DA, Harper PE, Gruner SM, Honeker CC, Kim G, Thomas EL, Fetters LJ (1994) The gyroid: a new equilibrium morphology in weakly segregated diblock copolymers. Macromolecules 27:4063–4075ADSGoogle Scholar
  94. 94.
    Laurer JH, Hajduk DA, Fung JC, Sedat JW, Smith SD, Gruner SM, Agard DA, Spontak RJ (1997) Microstructural analysis of a cubic bicontinuous morphology in a neat SIS triblock copolymer. Macromolecules 30:3938–3941ADSGoogle Scholar
  95. 95.
    Avgeropoulos A, Dair BJ, Hadjichristidis N, Thomas EL (1997) Tricontinuous double gyroid cubic phase in triblock copolymers of the ABA type. Macromolecules 30:5634–5642ADSGoogle Scholar
  96. 96.
    Epps TH, Cochran EW, Bailey TS, Waletzko RS, Hardy CM, Bates FS (2004) Ordered network phases in linear poly(isoprene-b-styrene-b-ethylene oxide) triblock copolymers. Macromolecules 37:8325–8341ADSGoogle Scholar
  97. 97.
    Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CTW, Olson DH, Sheppard EW (1992) A new family of mesoporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc 114:10834–10843Google Scholar
  98. 98.
    Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359:710–712ADSGoogle Scholar
  99. 99.
    Zou X, Conradsson T, Klingstedt M, Dadachov MS, O’Keeffe M (2005) A mesoporous germanium oxide with crystalline pore walls and its chiral derivative. Nature 437:716–719ADSGoogle Scholar
  100. 100.
    Deng Y, Landh T (1995) The cubic gyroid-based membrane structure of the chloroplast in zygnema (chlorophyceae zygnematales). Zool Stud 34:175–177Google Scholar
  101. 101.
    Almsherqi ZA, Landh T, Kohlwein SD, Deng Y (2009) Chapter 6 cubic membranes: the missing dimension of cell membrane organization. Int Rev Cel Mol Biol 274:275–342Google Scholar
  102. 102.
    Sun J, Bonneau C, Cantin A, Corma A, Diaz-Cabanas MJ, Moliner M, Zhang D, Li M, Zou X (2009) The ITQ-37 mesoporous chiral zeolite. Nature 458:1154–1157ADSGoogle Scholar
  103. 103.
    Hyde ST, O’Keeffe M, Proserpio DM (2008) A short history of an elusive yet ubiquitous structure in chemistry, materials, and mathematics. Angew Chem 47:7996–8000Google Scholar
  104. 104.
    Terasaki O, Liu Z, Ohsuna T, Shin HJ, Ryoo R (2002) Electron microscopy study of novel Pt nanowires synthesized in the spaces of silica mesoporous materials. Microsc Microanal 8:35–39ADSGoogle Scholar
  105. 105.
    Vignolini S, Yufa NA, Cunha PS, Guldin S, Rushkin I, Stefik M, Hur K, Wiesner U, Baumberg JJ, Steiner U (2012) A 3D optical metamaterial made by self-assembly. Adv Mater 24:OP23–OP27Google Scholar
  106. 106.
    Mille C, Tyrode EC, Corkery RW (2011) Inorganic chiral 3D photonic crystals with bicontinuous gyroid structure replicated from butterfly wing scales. Chem Commun 47:9873–9875Google Scholar
  107. 107.
    Mille C, Tyrode EC, Corkery RW (2013) 3D titania photonic crystals replicated from gyroid structures in butterfly wing scales: approaching full band gaps at visible wavelengths. RSC Adv 3:3109–3117Google Scholar
  108. 108.
    Thiel M, Fischer H, von Freymann G, Wegener M (2010) Three-dimensional chiral photonic superlattices. Opt Lett 35:166–168ADSGoogle Scholar
  109. 109.
    Lee J, Chan C (2005) Polarization gaps in spiral photonic crystals. Opt Express 13:8083–8088ADSGoogle Scholar
  110. 110.
    Cao W, Munoz A, Palffy-Muhoray P, Taheri B (2002) Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II. Nat Mater 1:111–113ADSGoogle Scholar
  111. 111.
    Coles HJ, Pivnenko MN (2005) Liquid crystal blue phases with a wide temperature range. Nature 436:997–1000ADSGoogle Scholar
  112. 112.
    Kikuchi H, Yokota M, Hisakado Y, Yang H, Kajiyama T (2002) Polymer-stabilized liquid crystal blue phases. Nat Mater 1:64–68ADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Mark D. Turner
    • 1
  • Gerd E. Schröder-Turk
    • 2
  • Min Gu
    • 1
  1. 1.Centre for Micro-Photonics and CUDOS, Faculty of Engineering and Industrial SciencesSwinburne University of TechnologyHawthornAustralia
  2. 2.Theoretische PhysikFriedrich-Alexander Universität Erlangen-NürnbergErlangenGermany

Personalised recommendations