Utilising Provenance to Enhance Social Computation

  • Milan Markovic
  • Peter Edwards
  • David Corsar
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8219)


Many online platforms employ networks of human workers to perform computational tasks that can be difficult for a machine (e.g. reporting travel disruption). Such systems have to make a range of decisions, for example, selection of suitable workers for a task. In this paper we present an approach that utilises Semantic Web technologies and provenance to support such decision-making processes.


Social Property Collective Intelligence Trust Assessment Ontological Realisation RESTful Service 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Balog, K., Fang, Y., De Rijke, M., Serdyukov, P., Si, L.: Expertise retrieval. Foundations and Trends in Information Retrieval 6, 127–256 (2012)CrossRefGoogle Scholar
  2. 2.
    Difallah, D.E., Demartini, G., Cudré-Mauroux, P.: Pick-a-crowd: tell me what you like, and i’ll tell you what to do. In: Proceedings of the 22nd International Conference on World Wide Web, pp. 367–374 (2013)Google Scholar
  3. 3.
    Hendler, J., Berners-Lee, T.: From the semantic web to social machines: A research challenge for AI on the world wide web. Artificial Intelligence 174(2), 156–161 (2009)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Malone, T.W., Laubacher, R., Dellarocas, C.N.: Harnessing crowds: Mapping the genome of collective intelligence. MIT Sloan Research Paper No. 4732-09. SSRN,
  5. 5.
    Minder, P., Bernstein, A.: Crowdlang: a programming language for the systematic exploration of human computation systems. In: Aberer, K., Flache, A., Jager, W., Liu, L., Tang, J., Guéret, C. (eds.) SocInfo 2012. LNCS, vol. 7710, pp. 124–137. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  6. 6.
    Missier, P., Dey, S., Belhajjame, K., Cuevas-Vicenttin, V., Ludaescher, B.: D-prov: extending the prov provenance model with workflow structure. Technical report, School of Computing Science, Newcastle University (2013)Google Scholar
  7. 7.
    Moreau, L., Missier, P.: Prov-dm: The prov data model. W3C Recommendation (April 2012),
  8. 8.
    Mukherjee, S., Davulcu, H., Kifer, M., Senkul, P., Yang, G.: Logic-based approaches to workflow modeling and verification. In: Logics for Emerging Applications of Databases, pp. 167–202. Springer (2004)Google Scholar
  9. 9.
    Pignotti, E., Edwards, P., Gotts, N., Polhill, P.: Enhancing workflow with a semantic description of scientific intent. Journal of Web Semantics: Science, Services and Agents on the World Wide Web 9, 222–244 (2010)CrossRefGoogle Scholar
  10. 10.
    Rajbhandari, S., Contes, A., Rana, O.F., Deora, V., Wootten, I.: Trust assessment using provenance in service oriented applications. In: 10th IEEE International Conference on Enterprise Distributed Object Computing Workshops, EDOCW 2006, p. 65. IEEE (2006)Google Scholar
  11. 11.
    Robertson, D., Giunchiglia, F.: Programming the social computer. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 371(1987) (2013)Google Scholar
  12. 12.
    Schall, D., Satzger, B., Psaier, H.: Crowdsourcing tasks to social networks in BPELl4people. World Wide Web, 1–32 (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Milan Markovic
    • 1
  • Peter Edwards
    • 1
  • David Corsar
    • 1
  1. 1.Computing Science & dot.rural Digital Economy HubUniversity of AberdeenAberdeenUK

Personalised recommendations