Empirical Study of Logic-Based Modules: Cheap Is Cheerful

  • Chiara Del Vescovo
  • Pavel Klinov
  • Bijan Parsia
  • Ulrike Sattler
  • Thomas Schneider
  • Dmitry Tsarkov
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8218)


For ontology reuse and integration, a number of approaches have been devised that aim at identifying modules, i.e., suitably small sets of “relevant” axioms from ontologies. Here we consider three logically sound notions of modules: MEX modules, only applicable to inexpressive ontologies; modules based on semantic locality, a sound approximation of the first; and modules based on syntactic locality, a sound approximation of the second (and thus the first), widely used since these modules can be extracted from OWL DL ontologies in time polynomial in the size of the ontology.

In this paper we investigate the quality of both approximations over a large corpus of ontologies, using our own implementation of semantic locality, which is the first to our knowledge. In particular, we show with statistical significance that, in most cases, there is no difference between the two module notions based on locality; where they differ, the additional axioms can either be easily ruled out or their number is relatively small. We classify the axioms that explain the rare differences into four kinds of “culprits” and discuss which of those can be avoided by extending the definition of syntactic locality. Finally, we show that differences between MEX and locality-based modules occur for a minority of ontologies from our corpus and largely affect (approximations of) expressive ontologies – this conclusion relies on a much larger and more diverse sample than existing comparisons between MEX and syntactic locality-based modules.


  1. 1.
    Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press (2003)Google Scholar
  2. 2.
    Croarkin, C., Tobias, P. (eds.): NIST/SEMATECH e-Handbook of Statistical Methods. NIST/SEMATECH (2012),
  3. 3.
    Cuenca Grau, B., Horrocks, I., Kazakov, Y., Sattler, U.: Modular reuse of ontologies: Theory and practice. J. of Artif. Intell. Research 31(1), 273–318 (2008)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Cuenca Grau, B., Parsia, B., Sirin, E., Kalyanpur, A.: Modularity and Web ontologies. In: Proc. of KR 2006. AAAI Press/The MIT Press (2006)Google Scholar
  5. 5.
    Del Vescovo, C., Klinov, P., Parsia, B., Sattler, U., Schneider, T., Tsarkov, D.: Empirical study of logic-based modules: Cheap is cheerful. Technical report (2013),
  6. 6.
    Del Vescovo, C., Parsia, B., Sattler, U., Schneider, T.: The modular structure of an ontology: an empirical study. In: Proc. of DL 2010, vol. 573. (2010)Google Scholar
  7. 7.
    Del Vescovo, C., Parsia, B., Sattler, U., Schneider, T.: The modular structure of an ontology: Atomic decomposition. In: Proc. of IJCAI 2011, pp. 2232–2237 (2011)Google Scholar
  8. 8.
    Del Vescovo, C., Parsia, B., Sattler, U., Schneider, T.: The modular structure of an ontology: Atomic decomposition and module count. In: Proc. of WoMO 2011. FAIA, vol. 230, pp. 25–39 (2011)Google Scholar
  9. 9.
    Garson, J.: Modularity and relevant logic. Notre Dame J. of Formal Logic 30(2), 207–223 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Ghilardi, S., Lutz, C., Wolter, F.: Did I damage my ontology? A case for conservative extensions in Description Logics. In: Proc. of KR 2006, pp. 187–197. AAAI Press/The MIT Press (2006)Google Scholar
  11. 11.
    Horridge, M., Parsia, B., Sattler, U.: Laconic and precise justifications in OWL. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 323–338. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Horridge, M., Parsia, B., Sattler, U.: The state of bio-medical ontologies. In: Proc. of ISMB 2011 (2011)Google Scholar
  13. 13.
    Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible \(\mathcal{SROIQ}\). In: Proc. of KR 2006, pp. 57–67 (2006)Google Scholar
  14. 14.
    Konev, B., Lutz, C., Walther, D., Wolter, F.: Semantic modularity and module extraction in description logics. In: Proc. of ECAI 2008, pp. 55–59 (2008)Google Scholar
  15. 15.
    Kontchakov, R., Pulina, L., Sattler, U., Schneider, T., Selmer, P., Wolter, F., Zakharyaschev, M.: Minimal module extraction from DL-Lite ontologies using QBF solvers. In: Proc. of IJCAI 2009, pp. 836–841 (2009)Google Scholar
  16. 16.
    Kontchakov, R., Wolter, F., Zakharyaschev, M.: Logic-based ontology comparison and module extraction, with an application to DL-Lite. Artificial Intelligence 174(15), 1093–1141 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Lutz, C., Walther, D., Wolter, F.: Conservative extensions in expressive Description Logics. In: Proc. of IJCAI 2007, pp. 453–458 (2007)Google Scholar
  18. 18.
    Lutz, C., Wolter, F.: Deciding inseparability and conservative extensions in the description logic \(\mathcal{EL}\). J. of Symbolic Computation 45(2), 194–228 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Sattler, U., Schneider, T., Zakharyaschev, M.: Which kind of module should I extract? In: Proc. of DL 2009, vol. 477. (2009)Google Scholar
  20. 20.
    Smithson, M.: Confidence Intervals. Quantitative Applications in the Social Sciences. Sage Publications (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Chiara Del Vescovo
    • 1
  • Pavel Klinov
    • 2
  • Bijan Parsia
    • 1
  • Ulrike Sattler
    • 1
  • Thomas Schneider
    • 3
  • Dmitry Tsarkov
    • 1
  1. 1.University of ManchesterUK
  2. 2.University of UlmGermany
  3. 3.Universität BremenGermany

Personalised recommendations