Discovering Missing Semantic Relations between Entities in Wikipedia

  • Mengling Xu
  • Zhichun Wang
  • Rongfang Bie
  • Juanzi Li
  • Chen Zheng
  • Wantian Ke
  • Mingquan Zhou
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8218)

Abstract

Wikipedia’s infoboxes contain rich structured information of various entities, which have been explored by the DBpedia project to generate large scale Linked Data sets. Among all the infobox attributes, those attributes having hyperlinks in its values identify semantic relations between entities, which are important for creating RDF links between DBpedia’s instances. However, quite a few hyperlinks have not been anotated by editors in infoboxes, which causes lots of relations between entities being missing in Wikipedia. In this paper, we propose an approach for automatically discovering the missing entity links in Wikipedia’s infoboxes, so that the missing semantic relations between entities can be established. Our approach first identifies entity mentions in the given infoboxes, and then computes several features to estimate the possibilities that a given attribute value might link to a candidate entity. A learning model is used to obtain the weights of different features, and predict the destination entity for each attribute value. We evaluated our approach on the English Wikipedia data, the experimental results show that our approach can effectively find the missing relations between entities, and it significantly outperforms the baseline methods in terms of both precision and recall.

Keywords

Wikipedia Infobox Linked Data 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.G.: DBpedia: A nucleus for a web of open data. In: Aberer, K., et al. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R., Hellmann, S.: DBpedia - a crystallization point for the web of data. Web Semantics: Science, Services and Agents on the World Wide Web 7(3), 154–165 (2009)CrossRefGoogle Scholar
  3. 3.
    Bollacker, K.D., Cook, R.P., Tufts, P.: Freebase: a shared database of structured general human knowledge. In: Proceedings of the 22nd National Conference on Artificial Intelligence, vol. 2, pp. 1962–1963 (2007)Google Scholar
  4. 4.
    Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning 20(3), 273–297 (1995)MATHGoogle Scholar
  5. 5.
    Cudre-Mauroux, P., Haghani, P., Jost, M., Aberer, K., De Meer, H.: idMesh: graph-based disambiguation of linked data. In: Proceedings of the 18th International Conference on World Wide Web, pp. 591–600 (2009)Google Scholar
  6. 6.
    Han, X., Sun, L., Zhao, J.: Collective entity linking in web text: a graph-based method. In: Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 765–774 (2011)Google Scholar
  7. 7.
    Kulkarni, S., Singh, A., Ramakrishnan, G., Chakrabarti, S.: Collective annotation of wikipedia entities in web text. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 457–466 (2009)Google Scholar
  8. 8.
    Mendes, P.N., Jakob, M., García-Silva, A., Bizer, C.: DBpedia spotlight: shedding light on the web of documents. In: Proceedings of the 7th International Conference on Semantic Systems, pp. 1–8 (2011)Google Scholar
  9. 9.
    Mihalcea, R., Csomai, A.: Wikify!: linking documents to encyclopedic knowledge. In: Proceedings of the Sixteenth ACM Conference on Conference on Information and Knowledge Management, pp. 233–242 (2007)Google Scholar
  10. 10.
    Milne, D., Witten, I.H.: An effective, low-cost measure of semantic relatedness obtained from wikipedia links. In: Proceedings of the First AAAI Workshop on Wikipedia and Artificial Intelligence (2008)Google Scholar
  11. 11.
    Milne, D., Witten, I.H.: Learning to link with wikipedia. In: Proceedings of the 17th ACM Conference on Information and Knowledge Management, pp. 509–518 (2008)Google Scholar
  12. 12.
    Nikolov, A., Uren, V.S., Motta, E., Roeck, A.N.D.: Handling instance coreferencing in the knofuss architecture. In: 1st International Workshop on Identity and Reference on the Semantic Web (2008)Google Scholar
  13. 13.
    Raimond, Y., Sutton, C., Sandler, M.: Automatic interlinking of music datasets on the semantic web. In: Proceedings of the 1st Linked Data on the Web WorkshopGoogle Scholar
  14. 14.
    Shen, W., Wang, J., Luo, P., Wang, M.: LIEGE: link entities in web lists with knowledge base. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1424–1432 (2012)Google Scholar
  15. 15.
    Shen, W., Wang, J., Luo, P., Wang, M.: LINDEN: linking named entities with knowledge base via semantic knowledge. In: Proceedings of the 21st International Conference on World Wide Web, pp. 449–458 (2012)Google Scholar
  16. 16.
    Suchanek, F.M., Kasneci, G., Weikum, G.: YAGO: a core of semantic knowledge. In: Proceedings of the 16th International Conference on World Wide Web, pp. 697–706 (2007)Google Scholar
  17. 17.
    Volz, J., Bizer, C., Gaedke, M., Kobilarov, G.: Discovering and maintaining links on the web of data. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 650–665. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Mengling Xu
    • 1
  • Zhichun Wang
    • 1
  • Rongfang Bie
    • 1
  • Juanzi Li
    • 2
  • Chen Zheng
    • 1
  • Wantian Ke
    • 1
  • Mingquan Zhou
    • 1
  1. 1.Beijing Normal UniversityBeijingChina
  2. 2.Tsinghua UniversityBeijingChina

Personalised recommendations