Pattern Based Knowledge Base Enrichment

  • Lorenz Bühmann
  • Jens Lehmann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8218)

Abstract

Although an increasing number of RDF knowledge bases are published, many of those consist primarily of instance data and lack sophisticated schemata. Having such schemata allows more powerful querying, consistency checking and debugging as well as improved inference. One of the reasons why schemata are still rare is the effort required to create them. In this article, we propose a semi-automatic schemata construction approach addressing this problem: First, the frequency of axiom patterns in existing knowledge bases is discovered. Afterwards, those patterns are converted to SPARQL based pattern detection algorithms, which allow to enrich knowledge base schemata. We argue that we present the first scalable knowledge base enrichment approach based on real schema usage patterns. The approach is evaluated on a large set of knowledge bases with a quantitative and qualitative result analysis.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agresti, A., Coull, B.A.: Approximate is better than “exact” for interval estimation of binomial proportions. The American Statistician 52(2), 119–126 (1998)MathSciNetGoogle Scholar
  2. 2.
    Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press (2003)Google Scholar
  3. 3.
    Baader, F., Ganter, B., Sattler, U., Sertkaya, B.: Completing description logic knowledge bases using formal concept analysis. In: IJCAI 2007. AAAI Press (2007)Google Scholar
  4. 4.
    Baader, F., Sertkaya, B., Turhan, A.-Y.: Computing the least common subsumer w.r.t. a background terminology. J. Applied Logic 5(3), 392–420 (2007)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Badea, L., Nienhuys-Cheng, S.-H.: A refinement operator for description logics. In: Cussens, J., Frisch, A.M. (eds.) ILP 2000. LNCS (LNAI), vol. 1866, pp. 40–59. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  6. 6.
    Blomqvist, E.: Ontocase-automatic ontology enrichment based on ontology design patterns. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 65–80. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Bühmann, L., Lehmann, J.: Universal OWL axiom enrichment for large knowledge bases. In: ten Teije, A., Völker, J., Handschuh, S., Stuckenschmidt, H., d’Acquin, M., Nikolov, A., Aussenac-Gilles, N., Hernandez, N. (eds.) EKAW 2012. LNCS, vol. 7603, pp. 57–71. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  8. 8.
    Bühmann, L., Lehmann, J.: OWL class expression to SPARQL rewriting. Technical report, University of Leipzig (2013), http://svn.aksw.org/papers/2013/OWL_SPARQL/public.pdf
  9. 9.
    Cohen, W.W., Borgida, A., Hirsh, H.: Computing least common subsumers in description logics. In: AAAI 1992, pp. 754–760 (1992)Google Scholar
  10. 10.
    Fanizzi, N., d’Amato, C., Esposito, F.: DL-FOIL concept learning in description logics. In: Železný, F., Lavrač, N. (eds.) ILP 2008. LNCS (LNAI), vol. 5194, pp. 107–121. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Fleischhacker, D., Völker, J., Stuckenschmidt, H.: Mining rdf data for property axioms. In: Meersman, R., Panetto, H., Dillon, T., Rinderle-Ma, S., Dadam, P., Zhou, X., Pearson, S., Ferscha, A., Bergamaschi, S., Cruz, I.F. (eds.) OTM 2012, Part II. LNCS, vol. 7566, pp. 718–735. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  12. 12.
    Gangemi, A., Presutti, V.: Ontology design patterns. In: Handbook on Ontologies, pp. 221–243. Springer (2009)Google Scholar
  13. 13.
    Hammar, K., Sandkuhl, K.: The state of ontology pattern research: a systematic review of iswc, eswc and aswc 2005–2009. In: Workshop on Ontology Patterns: Papers and Patterns from the ISWC Workshop, pp. 5–17 (2010)Google Scholar
  14. 14.
    Iannone, L., Palmisano, I., Fanizzi, N.: An algorithm based on counterfactuals for concept learning in the semantic web. Applied Intelligence 26(2), 139–159 (2007)CrossRefGoogle Scholar
  15. 15.
    Kang, Y.-B., Li, Y.-F., Krishnaswamy, S.: Predicting reasoning performance using ontology metrics. In: Cudré-Mauroux, P., Heflin, J., Sirin, E., Tudorache, T., Euzenat, J., Hauswirth, M., Parreira, J.X., Hendler, J., Schreiber, G., Bernstein, A., Blomqvist, E. (eds.) ISWC 2012, Part I. LNCS, vol. 7649, pp. 198–214. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  16. 16.
    Lehmann, J.: Hybrid learning of ontology classes. In: Perner, P. (ed.) MLDM 2007. LNCS (LNAI), vol. 4571, pp. 883–898. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. 17.
    Lehmann, J.: DL-Learner: learning concepts in description logics. Journal of Machine Learning Research (JMLR) 10, 2639–2642 (2009)MathSciNetMATHGoogle Scholar
  18. 18.
    Lehmann, J., Auer, S., Bühmann, L., Tramp, S.: Class expression learning for ontology engineering. Journal of Web Semantics 9, 71–81 (2011)CrossRefGoogle Scholar
  19. 19.
    Lehmann, J., Bühmann, L.: ORE - a tool for repairing and enriching knowledge bases. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part II. LNCS, vol. 6497, pp. 177–193. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  20. 20.
    Lehmann, J., Hitzler, P.: Foundations of refinement operators for description logics. In: Blockeel, H., Ramon, J., Shavlik, J., Tadepalli, P. (eds.) ILP 2007. LNCS (LNAI), vol. 4894, pp. 161–174. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  21. 21.
    Lehmann, J., Hitzler, P.: A refinement operator based learning algorithm for the \(\mathcal{ALC}\) description logic. In: Blockeel, H., Ramon, J., Shavlik, J., Tadepalli, P. (eds.) ILP 2007. LNCS (LNAI), vol. 4894, pp. 147–160. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  22. 22.
    Lehmann, J., Hitzler, P.: Concept learning in description logics using refinement operators. Machine Learning Journal 78(1-2), 203–250 (2010)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Lisi, F.A.: Building rules on top of ontologies for the semantic web with inductive logic programming. Theory and Practice of Logic Programming 8(3), 271–300 (2008)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Lisi, F.A., Esposito, F.: Learning SHIQ+log rules for ontology evolution. In: SWAP 2008. CEUR Workshop Proceedings, vol. 426. CEUR-WS.org (2008)Google Scholar
  25. 25.
    Mikroyannidi, E., Manaf, N.A.A., Iannone, L., Stevens, R.: Analysing syntactic regularities in ontologies. In: Klinov, P., Horridge, M. (eds.) OWLED. CEUR Workshop Proceedings, vol. 849. CEUR-WS.org (2012)Google Scholar
  26. 26.
    Morsey, M., Lehmann, J., Auer, S., Stadler, C., Hellmann, S.: DBpedia and the Live Extraction of Structured Data from Wikipedia. Program: Electronic Library and Information Systems 46, 27 (2012)CrossRefGoogle Scholar
  27. 27.
    Nienhuys-Cheng, S.-H., de Wolf, R.: Foundations of Inductive Logic Programming. LNCS, vol. 1228. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  28. 28.
    Rubin, D.L., Moreira, D.A., Kanjamala, P., Musen, M.A.: Bioportal: A web portal to biomedical ontologies. In: AAAI Spring Symposium: Symbiotic Relationships between Semantic Web and Knowledge Engineering, pp. 74–77. AAAI (2008)Google Scholar
  29. 29.
    Rudolph, S.: Exploring relational structures via FLE. In: Wolff, K.E., Pfeiffer, H.D., Delugach, H.S. (eds.) ICCS 2004. LNCS (LNAI), vol. 3127, pp. 196–212. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  30. 30.
    Sertkaya, B.: OntocomP system description. In: Grau, B.C., Horrocks, I., Motik, B., Sattler, U. (eds.) Proceedings of the 22nd International Workshop on Description Logics (DL 2009), Oxford, UK, July 27-30. CEUR Workshop Proceedings, vol. 477, CEUR-WS.org (2009)Google Scholar
  31. 31.
    Töpper, G., Knuth, M., Sack, H.: Dbpedia ontology enrichment for inconsistency detection. In: Proceedings of the 8th International Conference on Semantic Systems, pp. 33–40. ACM (2012)Google Scholar
  32. 32.
    Del Vescovo, C., Gessler, D.D.G., Klinov, P., Parsia, B., Sattler, U., Schneider, T., Winget, A.: Decomposition and modular structure of bioportal ontologies. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 130–145. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  33. 33.
    Völker, J., Niepert, M.: Statistical schema induction. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC 2011, Part I. LNCS, vol. 6643, pp. 124–138. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  34. 34.
    Völker, J., Rudolph, S.: Fostering web intelligence by semi-automatic OWL ontology refinement. In: Web Intelligence, pp. 454–460. IEEE (2008)Google Scholar
  35. 35.
    Völker, J., Vrandečić, D., Sure, Y., Hotho, A.: Learning disjointness. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 175–189. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  36. 36.
    Wu, H., Zubair, M., Maly, K.: Harvesting social knowledge from folksonomies. In: Proceedings of the Seventeenth Conference on Hypertext and Hypermedia, HYPERTEXT 2006, pp. 111–114. ACM, New York (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Lorenz Bühmann
    • 1
  • Jens Lehmann
    • 1
  1. 1.Institut für Informatik, AKSWUniversität LeipzigLeipzigGermany

Personalised recommendations