Federated Entity Search Using On-the-Fly Consolidation

  • Daniel M. Herzig
  • Peter Mika
  • Roi Blanco
  • Thanh Tran
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8218)


Nowadays, search on the Web goes beyond the retrieval of textual Web sites and increasingly takes advantage of the growing amount of structured data. Of particular interest is entity search, where the units of retrieval are structured entities instead of textual documents. These entities reside in different sources, which may provide only limited information about their content and are therefore called “uncooperative”. Further, these sources capture complementary but also redundant information about entities. In this environment of uncooperative data sources, we study the problem of federated entity search, where redundant information about entities is reduced on-the-fly through entity consolidation performed at query time. We propose a novel method for entity consolidation that is based on using language models and completely unsupervised, hence more suitable for this on-the-fly uncooperative setting than state-of-the-art methods that require training data. Further, we apply the same language model technique to deal with the federated search problem of ranking results returned from different sources. Particular novel are the mechanisms we propose to incorporate consolidation results into this ranking. We perform experiments using real Web queries and data sources. Our experiments show that our approach for federated entity search with on-the-fly consolidation improves upon the performance of a state-of-the-art preference aggregation baseline and also benefits from consolidation.


Retrieval Performance Resource Model Query Model Result List Entity Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Balog, K., Carmel, D., de Vries, A.P., Herzig, D.M., Mika, P., Roitman, H., Schenkel, R., Serdyukov, P., Tran Duc, T. (eds.): Proc. 1st Int. Workshop on Entity-Oriented and Semantic Search. JIWES, SIGIR (2012)Google Scholar
  2. 2.
    Guo, J., Xu, G., Cheng, X., Li, H.: Named entity recognition in query. In: SIGIR, pp. 267–274 (2009)Google Scholar
  3. 3.
    Pound, J., Mika, P., Zaragoza, H.: Ad-hoc object retrieval in the web of data. In: WWW, pp. 771–780 (2010)Google Scholar
  4. 4.
    Wick, M.L., Singh, S., McCallum, A.: A discriminative hierarchical model for fast coreference at large scale. ACL (1), 379–388 (2012)Google Scholar
  5. 5.
    Doan, A., Halevy, A.Y.: Semantic integration research in the database community: A brief survey. AI Magazine 26(1), 83–94 (2005)Google Scholar
  6. 6.
    Elmagarmid, A.K., Ipeirotis, P.G., Verykios, V.S.: Duplicate record detection: A survey. IEEE Trans. Knowl. Data Eng. 19(1), 1–16 (2007)CrossRefGoogle Scholar
  7. 7.
    Köpcke, H., Rahm, E.: Frameworks for entity matching: A comparison. Data Knowl. Eng. 69(2), 197–210 (2010)CrossRefGoogle Scholar
  8. 8.
    Callan, J.: Distributed information retrieval. In: Croft, W. (ed.) Advances in Information Retrieval. The Inf. Retrieval Series, vol. 7, pp. 127–150. Springer (2000)Google Scholar
  9. 9.
    Shokouhi, M., Si, L.: Federated search. Foundations and Trends in Information Retrieval 5(1), 1–102 (2011)CrossRefGoogle Scholar
  10. 10.
    Lavrenko, V.: A generative theory of relevance. Springer, Berlin (2009)MATHGoogle Scholar
  11. 11.
    Herzig, D.M., Tran, T.: Heterogeneous web data search using relevance-based on the fly data integration. In: WWW, pp. 141–150 (2012)Google Scholar
  12. 12.
    Volkovs, M., Zemel, R.S.: A flexible generative model for preference aggregation. In: WWW, pp. 479–488 (2012)Google Scholar
  13. 13.
    Chaudhuri, S., Chen, B.C., Ganti, V., Kaushik, R.: Example-driven design of efficient record matching queries. In: VLDB, pp. 327–338 (2007)Google Scholar
  14. 14.
    Neumayer, R., Balog, K., Nørvåg, K.: On the modeling of entities for ad-hoc entity search in the web of data. In: Baeza-Yates, R., de Vries, A.P., Zaragoza, H., Cambazoglu, B.B., Murdock, V., Lempel, R., Silvestri, F. (eds.) ECIR 2012. LNCS, vol. 7224, pp. 133–145. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  15. 15.
    Blanco, R., Halpin, H., Herzig, D.M., Mika, P., Pound, J., Thompson, H.S., Tran, D.T.: Repeatable and reliable search system evaluation using crowdsourcing. In: SIGIR, pp. 923–932 (2011)Google Scholar
  16. 16.
    Hayes, A.F., Krippendorff, K.: Answering the call for a standard reliability measure for coding data. Communication Methods and Measures 1(1), 77–89 (2007)CrossRefGoogle Scholar
  17. 17.
    Krippendorff, K.: Reliability in content analysis. Human Communication Research 30(3), 411–433 (2004)Google Scholar
  18. 18.
    Dalton, J., Blanco, R., Mika, P.: Coreference aware web object retrieval. In: CIKM, pp. 211–220 (2011)Google Scholar
  19. 19.
    Smucker, M.D., Allan, J., Carterette, B.: A comparison of statistical significance tests for information retrieval evaluation. In: CIKM, pp. 623–632 (2007)Google Scholar
  20. 20.
    Leuski, A.: Evaluating document clustering for interactive information retrieval. In: CIKM, pp. 33–40 (2001)Google Scholar
  21. 21.
    Rahm, E., Thor, A., Aumueller, D., Do, H.H., Golovin, N., Kirsten, T.: ifuice - information fusion utilizing instance correspondences and peer mappings. In: WebDB, pp. 7–12 (2005)Google Scholar
  22. 22.
    Hu, W., Chen, J., Qu, Y.: A self-training approach for resolving object coreference on the semantic web. In: WWW, pp. 87–96 (2011)Google Scholar
  23. 23.
    Song, D., Heflin, J.: Automatically generating data linkages using a domain-independent candidate selection approach. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 649–664. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  24. 24.
    Hogan, A., Zimmermann, A., Umbrich, J., Polleres, A., Decker, S.: Scalable and distributed methods for entity matching, consolidation and disambiguation over linked data corpora. J. Web Sem. 10, 76–110 (2012)CrossRefGoogle Scholar
  25. 25.
    Bhattacharya, I., Getoor, L.: Query-time entity resolution. J. Artif. Intell. Res. (JAIR) 30, 621–657 (2007)Google Scholar
  26. 26.
    Ioannou, E., Nejdl, W., Niederée, C., Velegrakis, Y.: On-the-fly entity-aware query processing in the presence of linkage. PVLDB 3(1), 429–438 (2010)Google Scholar
  27. 27.
    Balog, K., Neumayer, R., Nørvåg, K.: Collection ranking and selection for federated entity search. In: Calderón-Benavides, L., González-Caro, C., Chávez, E., Ziviani, N. (eds.) SPIRE 2012. LNCS, vol. 7608, pp. 73–85. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  28. 28.
    Blanco, R., Mika, P., Vigna, S.: Effective and efficient entity search in rdf data. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 83–97. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  29. 29.
    Cheng, T., Yan, X., Chang, K.C.C.: Entityrank: Searching entities directly and holistically. In: VLDB, pp. 387–398 (2007)Google Scholar
  30. 30.
    Endrullis, S., Thor, A., Rahm, E.: Entity search strategies for mashup applications. In: ICDE, pp. 66–77 (2012)Google Scholar
  31. 31.
    Arguello, J., Diaz, F., Callan, J.: Learning to aggregate vertical results into web search results. In: CIKM, pp. 201–210 (2011)Google Scholar
  32. 32.
    Nguyen, D., Demeester, T., Trieschnigg, D., Hiemstra, D.: Federated search in the wild: the combined power of over a hundred search engines. In: CIKM, pp. 1874–1878 (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Daniel M. Herzig
    • 1
  • Peter Mika
    • 2
  • Roi Blanco
    • 2
  • Thanh Tran
    • 1
  1. 1.Karlsruhe Institute of Technology (KIT)Germany
  2. 2.Yahoo! ResearchSpain

Personalised recommendations