Advertisement

SHADE: Secure HAmming DistancE Computation from Oblivious Transfer

  • Julien Bringer
  • Hervé Chabanne
  • Alain Patey
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7862)

Abstract

We introduce two new schemes for securely computing Hamming distance in the two-party setting. Our first scheme is a very efficient protocol, based solely on 1-out-of-2 Oblivious Transfer, that achieves full security in the semi-honest setting and one-sided security in the malicious setting. Moreover we show that this protocol is significantly more efficient than the previous proposals, that are either based on garbled circuits or on homomorphic encryption. Our second scheme achieves full security against malicious adversaries and is based on Committed Oblivious Transfer. These protocols have direct applications to secure biometric identification.

Keywords

Secure Multi-Party Computation Hamming Distance Oblivious Transfer Biometric Identification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aumann, Y., Lindell, Y.: Security against covert adversaries: Efficient protocols for realistic adversaries. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 137–156. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Blanton, M., Gasti, P.: Secure and efficient protocols for iris and fingerprint identification. In: Atluri, V., Diaz, C. (eds.) ESORICS 2011. LNCS, vol. 6879, pp. 190–209. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Bringer, J., Chabanne, H., Patey, A.: Shade: Secure hamming distance computation from oblivious transfer. IACR Cryptology ePrint Archive 2012, 586 (2012)Google Scholar
  4. 4.
    Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups (extended abstract). In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  5. 5.
    Camenisch, J., Stadler, M.: Proof systems for general statements about discrete logarithms. Tech. rep., Dept. of Computer Science, ETH Zurich (1997)Google Scholar
  6. 6.
    Canetti, R.: Security and composition of multiparty cryptographic protocols. J. Cryptology 13(1), 143–202 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information retrieval. In: FOCS, pp. 41–50 (1995)Google Scholar
  8. 8.
    Crépeau, C.: Verifiable disclosure of secrets and applications (abstract). In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 150–154. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  9. 9.
    Cristofaro, E.D., Gasti, P., Tsudik, G.: Fast and private computation of set intersection cardinality. IACR Cryptology ePrint Archive 2011, 141 (2011)Google Scholar
  10. 10.
    Damgård, I., Jurik, M.: A generalisation, a simplification and some applications of paillier’s probabilistic public-key system. In: Kim, K.-C. (ed.) PKC 2001. LNCS, vol. 1992, pp. 119–136. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  11. 11.
    El Gamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 10–18. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  12. 12.
    Goethals, B., Laur, S., Lipmaa, H., Mielikäinen, T.: On private scalar product computation for privacy-preserving data mining. In: Park, C.-S., Chee, S. (eds.) ICISC 2004. LNCS, vol. 3506, pp. 104–120. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Goldreich, O.: The Foundations of Cryptography. Basic Applications, vol. 2. Cambridge University Press (2004)Google Scholar
  14. 14.
    Hazay, C., Lindell, Y.: Efficient Secure Two-Party Protocols. Springer (2010)Google Scholar
  15. 15.
    Huang, Y., Evans, D., Katz, J., Malka, L.: Faster secure two-party computation using garbled circuits. In: USENIX Security Symposium (2011)Google Scholar
  16. 16.
    Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers efficiently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  17. 17.
    Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer – efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. 18.
    Ishai, Y., Prabhakaran, M., Sahai, A.: Secure arithmetic computation with no honest majority. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 294–314. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  19. 19.
    Jarecki, S., Shmatikov, V.: Efficient two-party secure computation on committed inputs. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 97–114. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  20. 20.
    Jarrous, A., Pinkas, B.: Secure hamming distance based computation and its applications. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS 2009. LNCS, vol. 5536, pp. 107–124. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  21. 21.
    Kiraz, M.S., Schoenmakers, B., Villegas, J.: Efficient committed oblivious transfer of bit strings. In: Garay, J.A., Lenstra, A.K., Mambo, M., Peralta, R. (eds.) ISC 2007. LNCS, vol. 4779, pp. 130–144. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  22. 22.
    Kolesnikov, V., Schneider, T.: Improved garbled circuit: Free XOR gates and applications. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 486–498. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  23. 23.
    Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computation in the presence of malicious adversaries. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 52–78. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  24. 24.
    Lindell, Y., Pinkas, B.: A proof of security of Yao’s protocol for two-party computation. J. Cryptology 22(2), 161–188 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Lindell, Y., Pinkas, B.: Secure two-party computation via cut-and-choose oblivious transfer. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 329–346. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  26. 26.
    Mohassel, P., Niksefat, S., Sadeghian, S., Sadeghiyan, B.: An efficient protocol for oblivious DFA evaluation and applications. In: Dunkelman, O. (ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 398–415. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  27. 27.
    Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: SODA, pp. 448–457 (2001)Google Scholar
  28. 28.
    Nielsen, J.B., Orlandi, C.: LEGO for two-party secure computation. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 368–386. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  29. 29.
    Osadchy, M., Pinkas, B., Jarrous, A., Moskovich, B.: Scifi - A system for secure face identification. In: IEEE Symposium on Security and Privacy, pp. 239–254 (2010)Google Scholar
  30. 30.
    Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  31. 31.
    Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and composable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 554–571. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  32. 32.
    Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure two-party computation is practical. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 250–267. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  33. 33.
    Rabin, M.O.: How to exchange secrets with oblivious transfer. Tech. Rep. TR-81, Aiken Computation Lab, Harvard University (1981)Google Scholar
  34. 34.
    University of Maryland, University of Virginia: Might be evil: Privacy-preserving computing, http://mightbeevil.com
  35. 35.
    Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: FOCS, pp. 162–167 (1986)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Julien Bringer
    • 1
  • Hervé Chabanne
    • 1
    • 2
  • Alain Patey
    • 1
    • 2
  1. 1.MorphoFrance
  2. 2.Identity and Security Alliance (The Morpho and Télécom ParisTech Research Center)Télécom ParisTechFrance

Personalised recommendations