Granular Computing and Sequential Three-Way Decisions

  • Yiyu Yao
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8171)


Real-world decision making typically involves the three options of acceptance, rejection and non-commitment. Three-way decisions can be motivated, interpreted and implemented based on the notion of information granularity. With coarse-grained granules, it may only be possible to make a definite decision of acceptance or rejection for some objects. A lack of detailed information may make a definite decision impossible for some other objects, and hence the third non-commitment option is used. Objects with a non-commitment decision may be further investigated by using fine-grained granules. In this way, multiple levels of granularity lead naturally to sequential three-way decisions.


Incorrect Decision Information Granulation Granular Computing Information Granularity Decision Tree Induction Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bargiela, A., Pedrycz, W. (eds.): Human-Centric Information Processing Through Granular Modelling. Springer, Berlin (2009)Google Scholar
  2. 2.
    Ciucci, D., Dubois, D., Prade, H.: Oppositions in rough set theory. In: Li, T., Nguyen, H.S., Wang, G., Grzymala-Busse, J., Janicki, R., Hassanien, A.E., Yu, H. (eds.) RSKT 2012. LNCS, vol. 7414, pp. 504–513. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  3. 3.
    Clark, P.G., Grzymala-Busse, J.W., Rzasa, W.: Generalizations of approximations. In: Lingras, P., Wolski, M., Cornelis, C., Mitra, S., Wasilewski, P. (eds.) RSKT 2013. LNCS (LNAI), vol. 8171, pp. 41–52. Springer, Heidelberg (2013)Google Scholar
  4. 4.
    Grzymala-Busse, J.W.: Generalized probabilistic approximations. In: Peters, J.F., Skowron, A., Ramanna, S., Suraj, Z., Wang, X. (eds.) Transactions on Rough Sets XVI. LNCS, vol. 7736, pp. 1–16. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  5. 5.
    Grzymala-Busse, J.W., Yao, Y.Y.: Probabilistic rule induction with the LERS data mining system. International Journal of Intelligent Systems 26, 518–539 (2011)CrossRefGoogle Scholar
  6. 6.
    Jia, X.Y., Liao, W.H., Tang, Z.M., Shang, L.: Minimum cost attribute reduction in decision-theoretic rough set models. Information Sciences 219, 151–167 (2013)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Li, H.X., Zhou, X.Z., Huang, B., Liu, D.: Cost-sensitive three-way decision: A sequential strategy. In: Lingras, P., Wolski, M., Cornelis, C., Mitra, S., Wasilewski, P. (eds.) RSKT 2013. LNCS (LNAI), vol. 8171, pp. 325–337. Springer, Heidelberg (2013)Google Scholar
  8. 8.
    Li, H.X., Zhou, X.Z., Zhao, J.B., Huang, B.: Cost-sensitive classification based on decision-theoretic rough set model. In: Li, T.R., Nguyen, H.S., Wang, G.Y., Grzymala-Busse, J.W., Janicki, R., Hassanien, A.E., Yu, H. (eds.) RSKT 2012. LNCS, vol. 7414, pp. 379–388. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  9. 9.
    Liu, D., Li, T.R., Liang, D.C.: Three-way government decision analysis with decision-theoretic rough sets. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 20, 119–132 (2012)CrossRefGoogle Scholar
  10. 10.
    Min, F., He, H.P., Qian, Y.H., Zhu, W.: Test-cost-sensitive attribute reduction. Information Sciences 181, 4928–4942 (2011)CrossRefGoogle Scholar
  11. 11.
    Min, F., Liu, Q.H.: A hierarchical model for test-cost-sensitive decision systems. Information Sciences 179, 2442–2452 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Moret, B.M.E.: Decision trees and diagrams. Computing Surveys 14, 593–623 (1982)CrossRefGoogle Scholar
  13. 13.
    Murthy, S.K.: Automatic construction of decision trees from data: A multi-disciplinary survey. Data Mining and Knowledge Discovery 2, 345–389 (1998)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Pauker, S.G., Kassirer, J.P.: The threshold approach to clinical decision making. The New England Journal of Medicine 302, 1109–1117 (1980)CrossRefGoogle Scholar
  15. 15.
    Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning About Data. Kluwer Academic Publishers, Boston (1991)CrossRefzbMATHGoogle Scholar
  16. 16.
    Pawlak, Z.: Granularity of knowledge, indiscernibility and rough sets. In: Proceedings of the 1998 IEEE International Conference on Fuzzy Systems, pp. 106–110 (1998)Google Scholar
  17. 17.
    Pedrycz, W., Skowron, A., Kreinovich, V. (eds.): Handbook of Granular Computing. Wiley, New York (2008)Google Scholar
  18. 18.
    Sosnowski, L., Ślęzak, D.: How to design a network of comparators. In: BHI 2013 (2013)Google Scholar
  19. 19.
    Turney, P.D.: Cost-sensitive classification: Empirical evaluation of a hybrid genetic decision tree induction algorithm. Journal of Artificial Intelligence Research 2, 369–409 (1995)Google Scholar
  20. 20.
    Wald, A.: Sequential tests of statistical hypotheses. Annals of Mathematical Statistics 16, 117–186 (1945)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Yao, J.T. (ed.): Novel Developments in Granular Computing: Applications for Advanced Human Reasoning and Soft Computation. Information Science Reference, Herskey (2010)Google Scholar
  22. 22.
    Yao, J.T., Vasilakos, A.V., Pedrycz, W.: Granular computing: Perspectives and challenges. IEEE Transactions on Cybernetics (2013), doi:10.1109/TSMCC, 2236648Google Scholar
  23. 23.
    Yao, Y.Y.: Granular computing: Basic issues and possible solutions. In: Proceedings of the 5th Joint Conference on Information Sciences, vol. 1, pp. 186–189 (2000)Google Scholar
  24. 24.
    Yao, Y.Y.: Probabilistic approaches to rough sets. Expert Systems 20, 287–297 (2003)CrossRefGoogle Scholar
  25. 25.
    Yao, Y.Y.: Probabilistic rough set approximations. International Journal of Approximation Reasoning 49, 255–271 (2008)CrossRefzbMATHGoogle Scholar
  26. 26.
    Yao, Y.Y.: Granular computing: Past, present, and future. In: Proceedings of the 2008 IEEE International Conference on Granular Computing, pp. 80–85 (2008)Google Scholar
  27. 27.
    Yao, Y.Y.: Three-way decisions with probabilistic rough sets. Information Sciences 180, 341–353 (2010)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Yao, Y.Y.: The superiority of three-way decisions in probabilistic rough set models. Information Sciences 181, 1080–1096 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Yao, Y.Y.: An outline of a theory of three-way decisions. In: Yao, J., Yang, Y., Słowiński, R., Greco, S., Li, H., Mitra, S., Polkowski, L. (eds.) RSCTC 2012. LNCS, vol. 7413, pp. 1–17. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  30. 30.
    Yao, Y.Y., Deng, X.F.: Sequential three-way decisions with probabilistic rough sets. In: Proceedings of the 10th IEEE International Conference on Cognitive Informatics and Cognitive Computing, pp. 120–125 (2011)Google Scholar
  31. 31.
    Zadeh, L.A.: Towards a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets and Systems 19, 111–127 (1997)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Yiyu Yao
    • 1
  1. 1.Department of Computer ScienceUniversity of ReginaReginaCanada

Personalised recommendations