Iterative Research Method Applied to the Design and Evaluation of a Dynamic Multicast Routing Scheme

  • Dimitri Papadimitriou
  • Florin Coras
  • Alberto Rodriguez
  • Valentin Carela
  • Davide Careglio
  • Lluís Fàbrega
  • Pere Vilà
  • Piet Demeester
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7586)

Abstract

Following the iterative research cycle process, this chapter elaborates a methodology and documents the steps followed for the design of a dynamic multicast routing algorithm, referred to as Greedy Compact Multicast Routing. Starting from the design of the dynamic multicast routing algorithm, we then evaluate by simulation on large-scale topologies its performance and compare them with the Abraham compact multicast routing scheme and two other reference schemes, namely the Shortest Path Tree (SPT) and the Steiner Tree (ST) algorithm. Performance evaluation and comparison include i) the stretch of the multicast routing paths also referred to as multicast distribution tree (MDT), ii) the memory space required to store the resulting routing table entries, and iii) the total communication or messaging cost, i.e., the number of messages exchanged to build the MDT. However, such performance evaluation is a necessary but not a sufficient condition to meet in order to expect deployment of multicast routing. Indeed, if one can determine that traffic exchanges are spatially and temporally concentrated, this would provide elements indicating the relevance for the introduction of such scheme in the Internet. Otherwise (if traffic exchanges are spatially and temporally diverse, i.e., highly distributed), then very few of them would benefit from a (shared) point-to-multipoint routing paths and multicast routing scheme would be less useful. For this purpose, we have conducted a multicast tree inference study. In turn, data and results obtained from these studies provides more realistic scenarios for emulation experiments against the currently deployed approach combining MBGP and PIMdeployed in IPTV or mVPN context.

Keywords

multicast routing compact experimental performance evaluation 

References

  1. 1.
    Fenner, B., et al.: Protocol Independent Multicast - Sparse Mode (PIM-SM), Internet Engineering Task Force (IETF), RFC 4601 (August 2006)Google Scholar
  2. 2.
    Ballardie, T., Francis, P., Crowcroft, J.: Core Based Trees (CBT): An Architecture for Scalable Multicast Routing. In: Proceedings of ACM Sigcomm, pp. 85–95 (1995)Google Scholar
  3. 3.
    Holbrook, H., Cain, B.: Source-Specific Multicast for IP, Internet Engineering Task Force (IETF), RFC 4607 (August 2006)Google Scholar
  4. 4.
    Diot, C., et al.: Deployment Issues for the IP Multicast Service and Architecture. IEEE Network 4(1), 78–88 (2000)CrossRefGoogle Scholar
  5. 5.
    EULER FP7 Project, Performance objectives, evaluation criteria and metrics. Technical report, https://www-sop.inria.fr/mascotte/EULER/wiki/pmwiki.php/Main/Deliverables
  6. 6.
    Pedroso, P., Papadimitriou, D., Careglio, D.: Dynamic compact multicast routing on power law graphs. In: 54th IEEE Globecom, Houston, TX, USA (December 2011)Google Scholar
  7. 7.
    Abraham, I., Malkhi, D., Ratajczak, D.: Compact multicast routing. In: Keidar, I. (ed.) DISC 2009. LNCS, vol. 5805, pp. 364–378. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Bates, T., et al.: Multiprotocol Extensions for BGP-4, Internet Engineering Task Force (IETF), RFC 4760 (January 2007)Google Scholar
  9. 9.
    Rosen, E., Aggarwal, R. (eds.): Multicast in MPLS/BGP IP VPNs, Internet Engineering Task Force (IETF), RFC 6513 (February 2012)Google Scholar
  10. 10.
    Bu, T., Towsley, D.: On distinguishing between Internet power law topology generators. In: Proc. 21th Annual IEEE International Conference on Computer Communications (INFOCOM 2002), vol. 2, pp. 638–647 (2002)Google Scholar
  11. 11.
    Sage’s Graph Library, http://www.sagemath.org/
  12. 12.
    Carela-Español, V., Barlet-Ros, P., Cabellos-Aparicio, A., S.-Pareta, J.: Analysis of the impact of sampling on NetFlow traffic classification. Computer Networks 55(5) (April 2011)Google Scholar
  13. 13.
  14. 14.
  15. 15.
  16. 16.
    Quinlan, J.: C4.5: programs for machine learning. Morgan Kaufmann (1993)Google Scholar
  17. 17.
    Phaal, P., Lavine, M.: sFlow Version 5. sFlow.org (July 2004)Google Scholar
  18. 18.

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Dimitri Papadimitriou
    • 1
  • Florin Coras
    • 2
  • Alberto Rodriguez
    • 2
  • Valentin Carela
    • 2
  • Davide Careglio
    • 2
  • Lluís Fàbrega
    • 3
  • Pere Vilà
    • 3
  • Piet Demeester
    • 4
  1. 1.Alcatel-Lucent Bell LabsAntwerpBelgium
  2. 2.Universitat Politècnica de CatalunyaBarcelonaSpain
  3. 3.Universitat de GironaGironaSpain
  4. 4.Ghent University and iMindsGhentBelgium

Personalised recommendations