Information Retrieval in Life Sciences: A Programmatic Survey

  • Matthias LangeEmail author
  • Ron Henkel
  • Wolfgang Müller
  • Dagmar Waltemath
  • Stephan Weise


Biomedical databases are a major resource of knowledge for research in the life sciences. The biomedical knowledge is stored in a network of thousands of databases, repositories and ontologies. These data repositories differ substantially in granularity of data, storage formats, database systems, supported data models and interfaces. In order to make full use of available data resources, the high number of heterogeneous query methods and frontends requires high bioinformatic skills. Consequently, the manual inspection of database entries and citations is a time-consuming task for which methods from computer science should be applied.Concepts and algorithms from information retrieval (IR) play a central role in facing those challenges. While originally developed to manage and query less structured data, information retrieval techniques become increasingly important for the integration of life science data repositories and associated information. This chapter provides an overview of IR concepts and their current applications in life sciences. Enriched by a high number of selected references to pursuing literature, the following sections will successively build a practical guide for biologists and bioinformaticians.


Information retrieval Data management Search engines Relevance ranking Recommender systems Semantic data networks Data integration 



This work was supported by the European Commission within its 7th Framework Programme, under the thematic area “Infrastructures”, contract number 283496, by the BMBF e:bio programme (University of Rostock) and the Leibniz Institute of Plant Genetics and Crop Plant Research (IPK).


  1. 1.
    Achard F, Vaysseix G, Barillot E (2001) XML, bioinformatics and data integration. Bioinformatics 17(2):115–125CrossRefGoogle Scholar
  2. 2.
    Adams M, Kelley J, Gocayne J, Dubnick M, Polymeropoulos M, Xiao H, Merril C, Wu A, Olde B, Moreno R, Kerlavage A, McCombie W, Venter J (1991) Complementary DNA sequencing: expressed sequence tags and human genome project. Science 252(5013):1651–1656CrossRefGoogle Scholar
  3. 3.
    Adomavicius G, Tuzhilin A (2005) Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Trans Knowl Data Eng 17(6):734–749CrossRefGoogle Scholar
  4. 4.
    Agichtein E, Brill E, Dumais S (2006) Improving web search ranking by incorporating user behavior information. In: SIGIR’06: proceedings of the 29th annual international ACM SIGIR conference on research and development in information retrieval, Seattle. ACM, New York, pp 19–26Google Scholar
  5. 5.
    Andrade L, Silva MJ (2006) Relevance ranking for geographic IR. In: Workshop on geographic information retrieval, SIGIR’06, SeattleGoogle Scholar
  6. 6.
    Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. Nat Genet 25(1):25–29CrossRefGoogle Scholar
  7. 7.
    Avraham S, Tung CW, Ilic K, Jaiswal P, Kellogg EA, McCouch S, Pujar A, Reiser L, Rhee SY, Sachs MM, Schaeffer M, Stein L, Stevens P, Vincent L, Zapata F, Ware D (2008) The plant ontology database: a community resource for plant structure and developmental stages controlled vocabulary and annotations. Nucl Acids Res 36(suppl_1):D449–D454Google Scholar
  8. 8.
    Baeza Yates RA, Neto BR (1999) Modern information retrieval. Addison-Wesley Longman Publishing Co., Inc., BostonGoogle Scholar
  9. 9.
    Bairoch A, Apweiler R, Wu CH, Barker WC, Boeckmann B, Ferro S, Gasteiger E, Huang H, Lopez R, Magrane M, Martin MJ, Natale DA, O’Donovan C, Redaschi N, Yeh LL (2005) The universal protein resource (UniProt). Nucl Acids Res 33(suppl_1):D154–D159Google Scholar
  10. 10.
    Bard JBL, Rhee SY (2004) Ontologies in biology: design, applications and future challenges. Nat Rev Genet 5(3):213–222CrossRefGoogle Scholar
  11. 11.
    Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, Brown CG, Hall KP, Evers DJ, Barnes CL, Bignell HR et al (2008) Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456(7218):53–59CrossRefGoogle Scholar
  12. 12.
    Bodenreider O, Stevens R (2006) Bio-ontologies: current trends and future directions. Brief Bioinform 7(3):256–274CrossRefGoogle Scholar
  13. 13.
    Botstein D, White R, Skolnick M, Davis R (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32(3):314–331Google Scholar
  14. 14.
    Brazma A, Krestyaninova M, Sarkans U (2006) Standards for systems biology. Nat Rev Genet 7:593–605CrossRefGoogle Scholar
  15. 15.
    Brin S, Page L (1998) The anatomy of a large-scale hypertextual Web search engine. In: Proceedings of the seventh international conference on world wide web 7, Brisbane, vol 30. Elsevier, Amsterdam, pp 107–117Google Scholar
  16. 16.
    Brockschmidt K (1995) Inside OLE, 2nd edn. Microsoft Press, RedmondGoogle Scholar
  17. 17.
    Bry F, Kröger P (2003) A computational biology database digest: data, data analysis, and data management. Distrib Parallel Databases 13(1):7–42CrossRefzbMATHGoogle Scholar
  18. 18.
    Codd EF (1970) A relational model of data for large shared data banks. Commun ACM 13(6):377–387CrossRefzbMATHGoogle Scholar
  19. 19.
    Cohen-Boulakia S, Leser U (2011) Next generation data integration for life sciences. In: Proceedings of the 2011 IEEE 27th international conference on data engineering (ICDE’11), Hannover. IEEE Computer Society, Los Alamitos, pp 1366–1369Google Scholar
  20. 20.
    Cuellar A, Lloyd C, Nielsen P, Bullivant D, Nickerson D, Hunter P (2003) An overview of cellmL 1.1, a biological model description language. Simulation 79(12):740–747CrossRefGoogle Scholar
  21. 21.
    Davidson S, Overton C, Buneman P (1995) Challenges in integrating biological data sources. J Comput Biol 2(4):557–572CrossRefGoogle Scholar
  22. 22.
    Day J (2001) The quest for information: a guide to searching the internet. J Contemp Dent Pract 2(4):033–043Google Scholar
  23. 23.
    Devlin B, Murphy P (1988) An architecture for a business and information system. IBM Syst J 27(1):60–80CrossRefGoogle Scholar
  24. 24.
    Divoli A, Hearst M, Wooldridge MA (2008) Evidence for showing gene/protein name suggestions in bioscience literature search interfaces. In: Pacific symposium on biocomputing, Kohala Coast, vol 13, pp 568–579Google Scholar
  25. 25.
    Doms A, Schroeder M (2005) GoPubMed: exploring PubMed with the Gene ontology. Nucl Acids Res 33(suppl_2):W783–W786Google Scholar
  26. 26.
    Dowell R, Jokerst R, Day A, Eddy S, Stein L (2001) The distributed annotation system. BMC Bioinform 2(1):7CrossRefGoogle Scholar
  27. 27.
    Eckerson WW (2002) Data quality and the bottom line: achieving business success through a commitment to high quality data. TDWI report series, The Data Warehousing Institute, SeattleGoogle Scholar
  28. 28.
    Efthimiadis EN (2000) Interactive query expansion: a user-based evaluation in a relevance feedback environment. J Am Soc Inf Sci 51(11):989–1003CrossRefGoogle Scholar
  29. 29.
    Elmasri R, Navathe SB (2000) Fundamentals of database systems, 3rd edn. Addison-Wesley, ReadingGoogle Scholar
  30. 30.
    Etzold T, Harris H, Beaulah S (2003) SRS: an integration platform for databanks and analysis tools in bioinformatics. In: Lacroix Z, Critchlow T (eds) Bioinformatics: managing scientific data. Morgan Kaufmann, San Francisco, pp 109–145CrossRefGoogle Scholar
  31. 31.
    Fenyö D (1999) The Biopolymer markup language. Bioinformatics 15(4):339–340CrossRefGoogle Scholar
  32. 32.
    Fernández-Suárez XM, Galperin MY (2013) The 2013 nucleic acids research database issue and the online molecular biology database collection. Nucl Acids Res 41(D1):D1–D7CrossRefGoogle Scholar
  33. 33.
    Geiger K (1995) Inside ODBC: [Der Entwicklerleitfaden zum Industriestandard für Datenbank-Schnittstellen]. Microsoft Press, UnterschleissheimGoogle Scholar
  34. 34.
    Gilmour R (2000) Taxonomic markup language: applying XML to systematic data. Bioinformatics 16(4):406–407CrossRefGoogle Scholar
  35. 35.
    Gleeson P, Crook S, Cannon R, Hines M, Billings G, Farinella M, Morse T, Davison A, Ray S, Bhalla U et al (2010) Neuroml: a language for describing data driven models of neurons and networks with a high degree of biological detail. PLoS Comput Biol 6(6):e1000815CrossRefGoogle Scholar
  36. 36.
    Goble C, Stevens R (2008) State of the nation in data integration for bioinformatics. J Biomed Inform 41(5):687–693CrossRefGoogle Scholar
  37. 37.
    Goujon M, Valentin F, Miyar T, McWilliam H, Lopez R (2007) The EB-eye. EMBnetnews 13(4):18–21Google Scholar
  38. 38.
    Gray J (2007) Jim gray on eScience: a transformed scientific method. Retrieved from
  39. 39.
    Greifeneder H (2010) Erfolgreiches SuchmaschinenMarketing: Wie Sie bei Google, Yahoo, MSN & Co. ganz nach oben kommen, 2nd edn. Gabler VerlagGoogle Scholar
  40. 40.
    Gruber TR (1993) A translation approach to portable ontology specifications. Knowl Acquis 5(2):199–220CrossRefGoogle Scholar
  41. 41.
    Hanisch D, Fundel K, Mevissen HT, Zimmer R, Fluck J (2005) Prominer: rule-based protein and gene entity recognition. BMC Bioinform 6(Suppl_1):S14Google Scholar
  42. 42.
    Hearst M (2006) Design recommendations for hierarchical faceted search interfaces. In: ACM SIGIR workshop on faceted search, SeattleGoogle Scholar
  43. 43.
    Hearst M (2009) Search user interfaces. Cambridge University Press, Cambridge/New YorkCrossRefGoogle Scholar
  44. 44.
    Henkel R, Endler L, Peters A, Le Novère N, Waltemath D (2010) Ranked retrieval of computational biology models. BMC Bioinform 11(1):423Google Scholar
  45. 45.
    Hines M, Morse T, Migliore M, Carnevale N, Shepherd G (2004) Modeldb: a database to support computational neuroscience. J Comput Neurosci 17(1):7–11CrossRefGoogle Scholar
  46. 46.
    Hoehndorf R, Dumontier M, Gennari JH, Wimalaratne S, de Bono B, Cook DL, Gkoutos GV (2011) Integrating systems biology models and biomedical ontologies. BMC Syst Biol 5(1):124CrossRefGoogle Scholar
  47. 47.
    Hucka M, Bergmann F, Keating S, Schaff J, Smith L (2010) The systems biology markup language (SBML): language specification for level 3 version.
  48. 48.
    Ide NC, Loane RF, Demner-Fushman D (2007) Essie: a concept-based search engine for structured biomedical text. J Am Med Inform Assoc 14(3):253–263CrossRefGoogle Scholar
  49. 49.
    Inmon W (2005) Building the data warehouse, 4th edn. Wiley, IndianapolisGoogle Scholar
  50. 50.
    Jaiswal1 P, Ware D, Ni J, Chang K, Zhao W, Schmidt S, Pan X, Clark K, Teytelman L, Cartinhour S, Stein L, McCouch S (2002) Gramene: development and integration of trait and gene ontologies for rice. Comparative and Functional Genomics 3(2):132–136Google Scholar
  51. 51.
    Juty N, Le Novère N, Laibe C (2012) and miriam registry: community resources to provide persistent identification. Nucl Acids Res 40(D1):D580–D586CrossRefGoogle Scholar
  52. 52.
    Kanz C, Aldebert P, Althorpe N, Baker W, Baldwin A, Bates K, Browne P, van den Broek A, Castro M, Cochrane G, Duggan K, Eberhardt R, Faruque N, Gamble J, Diez FG, Harte N, Kulikova T, Lin Q, Lombard V, Lopez R, Mancuso R, McHale M, Nardone F, Silventoinen V, Sobhany S, Stoehr P, Tuli MA, Tzouvara K, Vaughan R, Wu D, Zhu W, Apweiler R (2005) The EMBL nucleotide sequence database. Nucl Acids Res 33(suppl_1):D29–D33Google Scholar
  53. 53.
    Kasprzyk A (2011) Biomart: driving a paradigm change in biological data management. Database 2011:bar049CrossRefGoogle Scholar
  54. 54.
    Kimball R (1998) Bringing up supermarts – a step-by-step approach to building a data warehouse from granular data. DBMS and Internet Syst 11(1):47–53MathSciNetGoogle Scholar
  55. 55.
    Kitano H (2002) Systems biology: a brief overview. Science 295:1662–1664CrossRefGoogle Scholar
  56. 56.
    Krallinger M, Valencia A, Hirschman L (2008) Linking genes to literature: text mining, information extraction, and retrieval applications for biology. Genome Biol 9(Suppl 2):S8CrossRefGoogle Scholar
  57. 57.
    Krause F, Uhlendorf J, Lubitz T, Schulz M, Klipp E, Liebermeister W (2010) Annotation and merging of SBML models with semanticsbml. Bioinformatics 26(3):421–422CrossRefGoogle Scholar
  58. 58.
    Lacroix Z, Critchlow T (2003) Bioinformatics: managing scientific data. Morgan Kaufmann, San FranciscoGoogle Scholar
  59. 59.
    Laibe C (2011) Identifiers. org and miriam registry: perennial identifiers for crossreferencing purposes. Available from Nature Precedings.
  60. 60.
    Lange M, Spies K, Bargsten J, Haberhauer G, Klapperstück M, Leps M, Weinel C, Wünschiers R, Weißbach M, Stein J, Scholz U (2010) The LAILAPS search engine: relevance ranking in life science databases. J Integr Bioinform 7(2):e110Google Scholar
  61. 61.
    Langville AN, Meyer CD (2006) Google’s PageRank and beyond: the science of search engine rankings. Princeton University Press, PrincetonGoogle Scholar
  62. 62.
    Lassila O, Swick RR, Consortium WWW (1998) resource description framework (RDF) model and syntax specification.
  63. 63.
    Lee T, Pouliot Y, Wagner V, Gupta P, Stringer-Calvert D, Tenenbaum J, Karp P (2006) BioWarehouse: a bioinformatics database warehouse toolkit. BMC Bioinform 7(1):170CrossRefGoogle Scholar
  64. 64.
    Le Novère N, Finney A, Hucka M, Bhalla U, Campagne F, Collado-Vides J, Crampin E, Halstead M, Klipp E, Mendes P et al (2005) Minimum information requested in the annotation of biochemical models (MIRIAM). Nat Biotechnol 23(12):1509–1515CrossRefGoogle Scholar
  65. 65.
    Le Novère N, Courtot M, Laibe C (2006) Adding semantics in kinetics models of biochemical pathways. In: Proceedings of the 2nd international symposium on experimental standard conditions of enzyme characterizations, RuedesheimGoogle Scholar
  66. 66.
    Li C, Donizelli M, Rodriguez N, Dharuri H, Endler L, Chelliah V, Li L, He E, Henry A, Stefan M et al (2010) Biomodels database: an enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst Biol 4(1):92CrossRefGoogle Scholar
  67. 67.
    Lloyd C, Lawson J, Hunter P, Nielsen P (2008) The cellmL model repository. Bioinformatics 24(18):2122–2123CrossRefGoogle Scholar
  68. 68.
    Lu Z (2011) PubMed and beyond: a survey of web tools for searching biomedical literature. Database 2011:baq036CrossRefGoogle Scholar
  69. 69.
    Magrane M, UniProt Consortium (2011) UniProt Knowledgebase: a hub of integrated protein data. Database 2011:bar009Google Scholar
  70. 70.
    Marchionini G (2006) Exploratory search: from finding to understanding. Commun ACM 49(4):41–46CrossRefGoogle Scholar
  71. 71.
    Marenco L, Tosches N, Crasto C, Shepherd G, Miller P, Nadkarni P (2003) Achieving evolvable web-database bioscience applications using the EAV/CR framework: recent advances. J Am Med Inform Assoc 10(5):444–453CrossRefGoogle Scholar
  72. 72.
    Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen Z et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437(7057):376–380Google Scholar
  73. 73.
    Maxam A, Gilbert W (1977) A new method for sequencing DNA. Proc Natl Acad Sci 74(2):560–564CrossRefGoogle Scholar
  74. 74.
    Mehlhorn H, Lange M, Scholz U, Schreiber F (2012) IDPredictor: predict database links in biomedical database. J Integr Bioinform 9(2):e190Google Scholar
  75. 75.
    Murray-Rust P, Rzepa H (1999) Chemical markup, XML, and the World Wide Web. 1. Basic principles. J Chem Inf Comput Sci 39(6):928–946.
  76. 76.
    Nolin MA, Ansell P, Belleau F, Idehen K, Rigault P, Tourigny N, Roe P, Hogan JM, Dumontier M (2008) Bio2RDF network of linked data. In: Semantic web challenge; international semantic web conference (ISWC 2008), KarlsruheGoogle Scholar
  77. 77.
    O’Connor B, Day A, Cain S, Arnaiz O, Sperling L, Stein L (2008) Gmodweb: a web framework for the generic model organism database. Genome Biol 9(6):R102CrossRefGoogle Scholar
  78. 78.
    Olivier B, Snoep J (2004) Web-based kinetic modelling using JWS online. Bioinformatics 20(13):2143–2144CrossRefGoogle Scholar
  79. 79.
    Pearson W, Lipman D (1988) Improved tools for biological sequence comparison. Proc Natl Acad Sci USA 85:2444–2448CrossRefGoogle Scholar
  80. 80.
    Prud’hommeaux E, Seaborne A (2008) SPARQL query language for RDF.
  81. 81.
    Richardson M, Prakash A, Brill E (2006) Beyond pagerank: machine learning for static ranking. In: WWW’06: proceedings of the 15th international conference on World Wide Web, Edinburgh. ACM, New York, pp 707–715Google Scholar
  82. 82.
    Roos DS (2001) Bioinformatics-trying to swim in a sea of data. Science 291(5507): 1260–1261CrossRefGoogle Scholar
  83. 83.
    Saake G, Heuer A (1999) Datenbanken: Implementierungstechniken, 1st edn. MITP, BonnGoogle Scholar
  84. 84.
    Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci 74(12):5463–5467CrossRefGoogle Scholar
  85. 85.
    Schadt E, Linderman M, Sorenson J, Lee L, Nolan G (2010) Computational solutions to large-scale data management and analysis. Nat Rev Genet 11(9):647–657CrossRefGoogle Scholar
  86. 86.
    Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270(5235):467–470CrossRefGoogle Scholar
  87. 87.
    Schmitt I (1998) Schemaintegration für den Entwurf Föderierter Datenbanken. infix, Sankt AugustinGoogle Scholar
  88. 88.
    Schöch V (2001) Die Suchmaschine Google. Seminararbeit, Institut für Informatik, Freie Universität zu BerlinGoogle Scholar
  89. 89.
    Schönsleben P (2001) Integrales Informationsmanagement: Informationssysteme für Geschäftsprozesse – Management, Modellierung, Lebenszyklus und Technologie, 2nd edn. Springer, Berlin/HeidelbergCrossRefGoogle Scholar
  90. 90.
    Schuler GD, Epstein JA, Ohkawa H, Kans JA (1996) Entrez: molecular biology database and retrieval system. In: Doolittle RF (ed) Computer methods for macromolecular sequence analysis. Methods in enzymology, vol 266. Academic, San Diego, pp 141–162CrossRefGoogle Scholar
  91. 91.
    Schulz M, Krause F, Le Novère N, Klipp E, Liebermeister W (2011) Retrieval, alignment, and clustering of computational models based on semantic annotations. Mol Syst Biol 7(1):512Google Scholar
  92. 92.
    Shah S, Huang Y, Xu T, Yuen M, Ling J, Ouellette BFF (2005) Atlas – a data warehouse for integrative bioinformatics. BMC Bioinform 6(1):34CrossRefGoogle Scholar
  93. 93.
    Siegel J (1996) CORBA fundamentals and programming. Wiley, New YorkGoogle Scholar
  94. 94.
    Siple MD (1998) The complete guide to Java database programming with JDBC. McGraw-Hill, New York/LondonGoogle Scholar
  95. 95.
    Smedley D, Haider S, Ballester B, Holland R, London D, Thorisson G, Kasprzyk A (2009) BioMart – biological queries made easy. BMC Genomics 10(1):22CrossRefGoogle Scholar
  96. 96.
    Smith B, Ashburner M, Rosse C, Bard J, Bug W, Ceusters W, Goldberg L, Eilbeck K, Ireland A, Mungall C et al (2007) The OBO foundry: coordinated evolution of ontologies to support biomedical data integration. Nat Biotechnol 25(11):1251–1255CrossRefGoogle Scholar
  97. 97.
    Stein L (2010) The case for cloud computing in genome informatics. Genome Biol 11(5):207CrossRefGoogle Scholar
  98. 98.
    Stephens SM, Chen JY, Davidson MG, Thomas S, Trute BM (2005) Oracle database 10 g: a platform for BLAST search and regular expression pattern matching in life sciences. Nucl Acids Res 33(suppl_1):D675–D679Google Scholar
  99. 99.
    Taylor C, Field D, Sansone S, Aerts J, Apweiler R, Ashburner M, Ball C, Binz P, Bogue M, Booth T et al (2008) Promoting coherent minimum reporting guidelines for biological and biomedical investigations: the MIBBI project. Nat Biotechnol 26(8):889–896CrossRefGoogle Scholar
  100. 100.
    United States National Library of Medicine (2011) Pubmed celebrates its 10th anniversary.
  101. 101.
    Valencia A (2002) Search and retrieve: large-scale data generation is becoming increasingly important in biological research. But how good are the tools to make sense of the data? EMBO Rep 3(5):396–400Google Scholar
  102. 102.
    Waltemath D, Henkel R, Winter F, Wolkenhauer O (2013) Reproducibility of model-based results in systems biology. In: Prokop A, Csukás B (eds) Systems biology: integrative biology and simulation tools. Springer, DordrechtGoogle Scholar
  103. 103.
    Weiner M, Hudson T (2002) Introduction to SNPs: discovery of markers for disease. Biotechniques 32(Supplement):S4–S13Google Scholar
  104. 104.
    Weise S, Grosse I, Klukas C, Koschützki D, Scholz U, Schreiber F, Junker B (2006) Meta-all: a system for managing metabolic pathway information. BMC Bioinform 7(1):e465CrossRefGoogle Scholar
  105. 105.
    Whetzel PL, Parkinson H, Causton HC, Fan L, Fostel J, Fragoso G, Game L, Heiskanen M, Morrison N, Rocca-Serra P, Sansone SA, Taylor C, White J, Stoeckert CJ (2006) The MGED ontology: a resource for semantics-based description of microarray experiments. Bioinformatics 22(7):866–873CrossRefGoogle Scholar
  106. 106.
    Whetzel P, Noy N, Shah N, Alexander P, Nyulas C, Tudorache T, Musen M (2011) BioPortal: enhanced functionality via new web services from the national center for biomedical ontology to access and use ontologies in software applications. Nucl Acids Res 39(suppl_2):W541–W545Google Scholar
  107. 107.
    Wiederhold G (1996) Intelligent integration of information – foreword. J Intell Inf Syst 6(2/3):93–98Google Scholar
  108. 108.
    Wiederhold G (1997) Mediators in the architecture of future information systems. In: Huhns MN, Singh MP (eds) Readings in agents. Morgan Kaufmann, San Francisco, pp 185–196Google Scholar
  109. 109.
    Yu T, Lloyd C, Nickerson D, Cooling M, Miller A, Garny A, Terkildsen J, Lawson J, Britten R, Hunter P et al (2011) The physiome model repository 2. Bioinformatics 27(5):743–744CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Matthias Lange
    • 1
    Email author
  • Ron Henkel
    • 2
  • Wolfgang Müller
    • 3
  • Dagmar Waltemath
    • 2
  • Stephan Weise
    • 1
  1. 1.Leibniz Institute of Plant Genetics and Crop Plant ResearchBioinformatics and Information TechnologyStadt SeelandGermany
  2. 2.Department of Systems Biology and BioinformaticsUniversity of RostockRostockGermany
  3. 3.HITS gGmbHHeidelbergGermany

Personalised recommendations