Advertisement

Graph-Based Substructure Pattern Mining Using CUDA Dynamic Parallelism

  • Fei Wang
  • Jianqiang Dong
  • Bo Yuan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8206)

Abstract

CUDA is an advanced massively parallel computing platform that can provide high performance computing power at much more affordable cost. In this paper, we present a parallel graph-based substructure pattern mining algorithm using CUDA Dynamic Parallelism. The key contribution is a parallel solution to traversing the DFS (Depth First Search) code tree. Furthermore, we implement a parallel frequent subgraph mining algorithm based on the subgraph mining techniques used in gSpan and the entire subgraph mining procedure is executed on GPU to ensure high efficiency. This parallel gSpan is functionally identical to the original gSpan and experiment results show that, with the latest CUDA Dynamic Parallelism techniques, significant speedups can be achieved on benchmark datasets, particularly in traversing a DFS code tree.

Keywords

DFS gSpan GPU CUDA Dynamic Parallelism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agrawal, R., Imielinski, T., Swami, A.: Mining Association Rules Between Sets of Items in Large Databases. ACM SIGMOD Record 22(2), 207–216 (1993)CrossRefGoogle Scholar
  2. 2.
    Buehrer, G., Parthasarathy, S., Nguyen, A., et al.: Parallel Graph Mining on Shared Memory Architectures. Technical report, The Ohio State University (2005)Google Scholar
  3. 3.
    CUDA C Programming Guide, NVIDIA Corporation (2012), http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
  4. 4.
    Freeman, J.: Parallel Algorithms for Depth-First Search. Technical report (1991)Google Scholar
  5. 5.
    Huan, J., Wang, W., Prins, J.: Efficient Mining of Frequent Subgraphs in the Presence of Isomorphism. In: 3rd IEEE International Conference on Data Mining, pp. 549–552 (2003)Google Scholar
  6. 6.
    Inokuchi, A., Washio, T., Motoda, H.: An Apriori-Based Algorithm for Mining Frequent Substructures from Graph Data. In: Zighed, D.A., Komorowski, J., Żytkow, J.M. (eds.) PKDD 2000. LNCS (LNAI), vol. 1910, pp. 13–23. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  7. 7.
    Kepler GK110 Architecture Whitepaper, NVIDIA Corporation (2013), http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
  8. 8.
    Kuramochi, M., Karypis, G.: Frequent Subgraph Discovery. In: 2001 IEEE International Conference on Data Mining, pp. 313–320 (2001)Google Scholar
  9. 9.
    Mannilla, H., Toivonen, H., Verkamo, I.: Discovering Frequent Episodes in Sequences. In: 1st International Conference on Knowledge Discovery and Data Mining, pp. 210–215 (1995)Google Scholar
  10. 10.
    Nijssen, S., Kok, J.N.: A Quickstart in Frequent Structure Mining Can Make a Difference. In: 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 647–652 (2004)Google Scholar
  11. 11.
    Nijssen, S., Kok, J.N.: The Gaston Tool for Frequent Subgraph Mining. Electronic Notes in Theoretical Computer Science 127(1), 77–87 (2005)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Punin, J.R., Krishnamoorthy, M.S., Zaki, M.J.: LOGML: Log Markup Language for Web Usage Mining. In: Kohavi, R., Masand, B., Spiliopoulou, M., Srivastava, J. (eds.) WebKDD 2001. LNCS (LNAI), vol. 2356, pp. 88–112. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Raghavan, P.: Social Networks on the Web and in the Enterprise. In: Zhong, N., Yao, Y., Ohsuga, S., Liu, J. (eds.) WI 2001. LNCS (LNAI), vol. 2198, pp. 58–60. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  14. 14.
    Wang, C., Parthasarathy, S.: Parallel Algorithms for Mining Frequent Structural Motifs in Scientific Data. In: 18th ACM International Conference on Supercomputing, pp. 31–40 (2004)Google Scholar
  15. 15.
    Wittenbrink, C.M., Kilgariff, E., Prabhu, A.: Fermi GF100 GPU Architecture. IEEE Micro 31(2), 50–59 (2011)CrossRefGoogle Scholar
  16. 16.
    Wörlein, M., Meinl, T., Fischer, I., Philippsen, M.: A Quantitative Comparison of the Subgraph Miners MoFa, gSpan, FFSM, and Gaston. In: Jorge, A.M., Torgo, L., Brazdil, P.B., Camacho, R., Gama, J. (eds.) PKDD 2005. LNCS (LNAI), vol. 3721, pp. 392–403. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Yan, X., Han, J.: gSpan: Graph-Based Substructure Pattern Mining. In: 2002 International Conference on Data Mining, pp. 721–724 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Fei Wang
    • 1
  • Jianqiang Dong
    • 1
  • Bo Yuan
    • 1
  1. 1.Intelligent Computing Lab, Division of Informatics, Graduate School at ShenzhenTsinghua UniversityShenzhenP.R. China

Personalised recommendations