Sample Identification in Hip Hop Music

  • Jan Van Balen
  • Joan Serrà
  • Martín Haro
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7900)

Abstract

Sampling is a creative tool in composition that is widespread in popular music production and composition since the 1980’s. However, the concept of sampling has for a long time been unaddressed in Music Information Retrieval. We argue that information on the origin of samples has a great musicological value and can be used to organise and disclose large music collections. In this paper we introduce the problem of automatic sample identification and present a first approach for the case of hip hop music. In particular, we modify and optimize an existing fingerprinting approach to meet the necessary requirements of a realworld sample identification task. The obtained results show the viability of such an approach, and open new avenues for research, especially with regard to inferring artist influences and detecting musical reuse.

Keywords

Digital Sampling Sample Recognition Musical Influence Content-based Music Retrieval 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bertin-Mahieux, T., Ellis, D.P.W.: Large-scale Cover Song Recognition Using Hashed Chroma Landmarks. In: IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, pp. 117–120 (2011)Google Scholar
  2. 2.
    Brown, J.C.: Calculation of a Constant Q Spectral Transform. Journal of the Acoustical Society of America 89(1), 425–434 (1991)CrossRefGoogle Scholar
  3. 3.
    Brown, J.C., Puckette, M.: An efficient algorithm for the calculation of a constant Q transform. Journal of the Acoustical Society of America 92(5), 2696–2701 (1992)CrossRefGoogle Scholar
  4. 4.
    Bryan, N.J., Wang, G.: Musical Influence Network Analysis and Rank of Sample-Based Music. In: 12th International Society for Music Information Retrieval Conference, pp. 329–334 (2011)Google Scholar
  5. 5.
    Butler, M.J.: Unlocking the groove: Rhythm, meter, and musical design in electronic dance music. Indiana University Press, Bloomington (2006)Google Scholar
  6. 6.
    Cano, P., Battle, E., Kalker, T., Haitsma, J.: A Review of Audio Fingerprinting. Journal of VLSI Signal Processing-Systems for Signal, Image, and Video Technology 41(3), 271–284 (2005)CrossRefGoogle Scholar
  7. 7.
    Casey, M., Slaney, M.: Fast Recognition of Remixed Music Audio. IEEE International Conference on Acoustics Speech and Signal Processing 4(12), 300–304 (2007)Google Scholar
  8. 8.
    Casey, M., Veltkamp, R., Goto, M., Leman, M., Rhodes, C., Slaney, M.: Content-Based Music Information Retrieval: Current Directions and Future Challenges. Proceedings of the IEEE 96(4), 668–696 (2008)CrossRefGoogle Scholar
  9. 9.
    Danielsen, A. (ed.): Musical Rhythm in the Age of Digital Reproduction. Ashgate, Farnham, Surrey (2010)Google Scholar
  10. 10.
    Demers, J.: Sampling the 1970s in Hip-Hop. Popular Music 22(1), 41–56 (2003)CrossRefGoogle Scholar
  11. 11.
    Dittmar, C., Hildebrand, K.F., Gaertner, D., Winges, M., Müller, F., Aichroth, P.: Audio Forensics Meets Music Information Retrieval, A Toolbox for Inspection of Music Plagiarism. In: 20th European Signal Processing Conference, Bucharest, Romania, pp. 1249–1253 (2012)Google Scholar
  12. 12.
    Downie, J.S.: The Music Information Retrieval Evaluation EXchange (2005-2007): a Window into Music Information Retrieval Research. Acoustical Science and Technology 29(4), 247–255 (2008)CrossRefGoogle Scholar
  13. 13.
    Fenet, S., Richard, G., Grenier, Y.: A Scalable Audio Fingerprint Method with Robustness to Pitch-Shifting. In: 12th International Society for Music Information Retrieval Conference, Miami, USA, pp. 121–126 (2011)Google Scholar
  14. 14.
    Fulford-Jones, W.: Sampling. In: Grove Music Online. Oxford Music Online (2011), http://www.oxfordmusiconline.com/subscriber/article/grove/music/47228
  15. 15.
    Grimshaw, J.: Bird of Paradise, Tape Collage. In: Allmusic (2013), http://www.allmusic.com/composition/bird-of-paradise-tape-collage-mc0002598825
  16. 16.
    Grimshaw, J.: Collage # 1 (“Blue Suede”). In: Allmusic (2013), http://www.allmusic.com/composition/collage-1-blue-suede-mc0002499059
  17. 17.
    Grosche, P., Müller, M., Serrà, J.: Audio Content-Based Music Retrieval. In: Müller, M., Goto, M., Schedl, M. (eds.) Multimodal Music Processing. Dagstuhl Publishing, Wadern (2012)Google Scholar
  18. 18.
    Katz, M.: Music in 1s and 0s: The Art and Politics of Digital Sampling. In: Capturing Sound: How Technology has Changed Music, pp. 137–157. University of California Press, Berkeley (2004)Google Scholar
  19. 19.
    Manning, C.D., Prabhakar, R., Schutze, H.: An Introduction to Information Retrieval. Cambridge University Press, Cambridge (2008)CrossRefGoogle Scholar
  20. 20.
    McKenna, T.: Where Digital Music Technology and Law Collide - Contemporary Issues of Digital Sampling, Appropriation and Copyright Law. Journal of Information Law and Technology 1 (2000)Google Scholar
  21. 21.
    Müller, M., Ellis, D., Klapuri, A., Richard, G.: Signal Processing for Music Analysis. IEEE Journal of Selected Topics in Signal Processing 5(6) (2011)Google Scholar
  22. 22.
    Peel, I.: Dance Music. In: Grove Music Online. Oxford Music Online (2011), http://www.oxfordmusiconline.com/subscriber/article/grove/music/47215
  23. 23.
    Self, H.: Digital Sampling: A Cultural Perspective. UCLA Ent. L. Rev. 9(2), 347–359 (2001)MathSciNetGoogle Scholar
  24. 24.
    Serrà, J., Gómez, E., Herrera, P.: Audio Cover Song Identification and Similarity: Background, Approaches, Evaluation, and Beyond. In: Raś, Z.W., Wieczorkowska, A.A. (eds.) Advances in Music Information Retrieval. SCI, vol. 274, pp. 307–332. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  25. 25.
    Serra, J.: Identification of Versions of the Same Musical Composition by Processing Audio Descriptions. PhD Thesis, Universitat Pompeu Fabra, Barcelona, Spain (2011)Google Scholar
  26. 26.
    Van Balen, J.: Automatic Recognition of Samples in Musical Audio. Master thesis, Universitat Pompeu Fabra, Spain (2011), http://mtg.upf.edu/node/2342
  27. 27.
    Wiering, F., Veltkamp, R., Garbers, J., Volk, A., Kranenburg, P.: Modelling Folksong Melodies. Interdisciplinary Science Reviews 34(2-3), 154–171 (2009)CrossRefGoogle Scholar
  28. 28.
    Wang, A.: An Industrial Strength Audio Search Algorithm. In: 4th International Society for Music Information Retrieval Conference, pp. 7–13 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jan Van Balen
    • 1
  • Joan Serrà
    • 2
  • Martín Haro
    • 3
  1. 1.Dept of Information and Computing SciencesUtrecht UniversityThe Netherlands
  2. 2.Artificial Intelligence Research Institute (IIIA-CSIC)BarcelonaSpain
  3. 3.Music Technology GroupUniversitat Pompeu FabraBarcelonaSpain

Personalised recommendations