UCOSAIS: A Framework for User-Centered Online Service Advertising Information Search

  • Hai Dong
  • Farookh Khadeer Hussain
  • Elizabeth Chang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8180)


The emergence of Internet advertising brings about an economic and efficient marketing means for small and medium enterprises in service industries. Every day, massive service advertising information is published over the Internet. Nevertheless, on the other side, service consumers find it difficult to quickly and precisely retrieve their desired services. This problem is partly caused by the ubiquitous, heterogeneous, and ambiguous nature of online service advertising information. In this paper, we propose a systematic framework – UCOSAIS – for online service advertising information search. Inspired by the philosophy of user-centered design, this framework comprises an ontology-learning-based focused crawler for service information discovery and classification, a faceted semantic search component for service concept selection, and a user-click-based similarity computing component for service concept ranking adjustment.


online service advertising information service discovery service search user-centered design 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wang, H., Lee, M.K.O., Wang, C.: Consumer privacy concerns about Internet marketing. Commun. ACM 41, 63–70 (1998)CrossRefGoogle Scholar
  2. 2.
    Dong, H., Hussain, F.K., Chang, E.: Ontology-learning-based focused crawling for online service advertising information discovery and classification. In: Liu, C., Ludwig, H., Toumani, F., Yu, Q. (eds.) ICSOC 2012. LNCS, vol. 7636, pp. 591–598. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  3. 3.
    Dong, H., Hussain, F.K.: Semantic service matchmaking for digital health ecosystems. Knowl.-Based Syst. 24, 761–774 (2011)CrossRefGoogle Scholar
  4. 4.
    Dong, H., Hussain, F.K., Chang, E.: A service search engine for the industrial digital ecosystems. IEEE Tran. Ind. Electron. 58, 2183–2196 (2011)CrossRefGoogle Scholar
  5. 5.
    Abras, C., Maloney-Krichmar, D., Preece, J.: User-Centered Design. In: Bainbridge, W. (ed.) Berkshire Encyclopedia of Human-Computer Interaction, vol. 2, pp. 763–768. Berkshire Publishing Group, Great Barrington (2004)Google Scholar
  6. 6.
    Spink, A., Wolfram, D., Jansen, M.B.J., Saracevic, T.: Searching the web: The public and their queries. J. Am. Soc. Inf. Sci. Tec. 52, 226–234 (2001)CrossRefGoogle Scholar
  7. 7.
    Dong, H., Hussain, F.K., Chang, E.: A context-aware semantic similarity model for ontology environments. Concurr. Comp. - Pract. E. 23, 505–524 (2011)CrossRefGoogle Scholar
  8. 8.
    Plebani, P., Pernici, B.: URBE: Web service retrieval based on similarity evaluation. IEEE Trans. Knowl. Data Eng. 21, 1629–1642 (2009)CrossRefGoogle Scholar
  9. 9.
    Shneiderman, B.: Designing the User Interface: Strategies for Effective Human-Computer Interaction. Addison-Wesley, Reading (1998)Google Scholar
  10. 10.
    Dong, H., Hussain, F.K., Chang, E.: A human-centered semantic service platform for the digital ecosystems environment. World Wide Web 13, 75–103 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Hai Dong
    • 1
  • Farookh Khadeer Hussain
    • 2
  • Elizabeth Chang
    • 1
  1. 1.School of Information SystemsCurtin University of TechnologyAustralia
  2. 2.School of SoftwareUniversity of TechnologySydneyAustralia

Personalised recommendations