Advertisement

β-Arrestins and G Protein-Coupled Receptor Trafficking

  • Xufan Tian
  • Dong Soo Kang
  • Jeffrey L. BenovicEmail author
Chapter
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 219)

Abstract

Nonvisual arrestins (β-arrestin-1 and β-arrestin-2) are adaptor proteins that function to regulate G protein-coupled receptor (GPCR) signaling and trafficking. β-arrestins are ubiquitously expressed and function to inhibit GPCR/G protein coupling, a process called desensitization, and promote GPCR trafficking and arrestin-mediated signaling. β-arrestin-mediated endocytosis of GPCRs requires the coordinated interaction of β-arrestins with clathrin, adaptor protein 2 (AP2), and phosphoinositides. These interactions are facilitated by a conformational change in β-arrestin that is thought to occur upon binding to a phosphorylated activated GPCR. In this review, we provide an overview of the key interactions involved in β-arrestin-mediated trafficking of GPCRs.

Keywords

Arrestin Receptor Phosphorylation Endocytosis Clathrin Adaptin Phosphoinositides 

References

  1. Antonescu CN, Aguet F, Danuser G, Schmid SL (2011) Phosphatidylinositol-(4,5)-bisphosphate regulates clathrin-coated pit initiation, stabilization, and size. Mol Biol Cell 22:2588–2600PubMedCentralPubMedCrossRefGoogle Scholar
  2. Berthouze M, Venkataramanan V, Li Y, Shenoy SK (2009) The deubiquitinases USP33 and USP20 coordinate β2 adrenergic receptor recycling and resensitization. EMBO J 28:1684–1696PubMedCentralPubMedCrossRefGoogle Scholar
  3. Bhandari D, Trejo J, Benovic JL, Marchese A (2007) Arrestin-2 interacts with the ubiquitin-protein isopeptide ligase atrophin-interacting protein 4 and mediates endosomal sorting of the chemokine receptor CXCR4. J Biol Chem 282:36971–36979PubMedCrossRefGoogle Scholar
  4. Burtey A, Schmid EM, Ford MGJ, Rapport JZ, Scott MGH, Marullo S, Simon SM, McMahon HT, Benmerah A (2007) The conserved isoleucine-valine-phenylalanine motif couples activation state and endocytic functions of β-arrestins. Traffic 8:914–931PubMedCrossRefGoogle Scholar
  5. Charest PG, Terrillon S, Bouvier M (2005) Monitoring agonist-promoted conformational changes of β-arrestin in living cells by intramolecular BRET. EMBO Rep 6:334–340PubMedCentralPubMedCrossRefGoogle Scholar
  6. Claing A, Chen W, Miller WE, Vitale N, Moss J, Premont RT, Lefkowitz RJ (2001) β-arrestin-mediated ADP-ribosylation factor 6 activation and β2-adrenergic receptor endocytosis. J Biol Chem 276:42509–42513PubMedCrossRefGoogle Scholar
  7. Edeling MA, Mishra SK, Keyel PA, Steinhauser AL, Collins BM, Roth R, Heuser JE, Owen DJ, Traub LM (2006) Molecular switches involving the AP-2 β2 appendage regulate endocytic cargo selection and clathrin coat assembly. Dev Cell 10:329–342PubMedCrossRefGoogle Scholar
  8. Ferguson SSG, Downey WE III, Colapietro AM, Barak LS, Menard L, Caron MG (1996) Role of β-arrestin in mediating agonist-promoted G protein-coupled receptor internalization. Science 271:363–366PubMedCrossRefGoogle Scholar
  9. Gaidarov I, Krupnick JG, Falck JR, Benovic JL, Keen JH (1999) Arrestin function in G protein-coupled receptor endocytosis requires phosphoinositide binding. EMBO J 18:871–881PubMedCentralPubMedCrossRefGoogle Scholar
  10. Goodman OB Jr, Krupnick JG, Santini F, Gurevich VV, Penn RB, Gagnon AW, Keen JH, Benovic JL (1996) β-Arrestin acts as a clathrin adaptor in endocytosis of the β2-adrenergic receptor. Nature 383:447–450PubMedCrossRefGoogle Scholar
  11. Goodman OB Jr, Krupnick JG, Gurevich VV, Benovic JL, Keen JH (1997) Arrestin/clathrin interaction: Localization of the arrestin binding locus to the clathrin terminal domain. J Biol Chem 272:15017–15022PubMedCrossRefGoogle Scholar
  12. Gurevich VV (1998) The selectivity of visual arrestin for light-activated phosphorhodopsin is controlled by multiple nonredundant mechanisms. J Biol Chem 273:15501–15506PubMedCrossRefGoogle Scholar
  13. Gurevich VV, Gurevich EV (2004) The molecular acrobatics of arrestin activation. Trends Pharmacol Sci 25:105–111PubMedCrossRefGoogle Scholar
  14. Han M, Gurevich VV, Vishnivetskiy SA, Sigler PB, Schubert C (2001) Crystal structure of β-arrestin at 1.9 Å: possible mechanism of receptor binding and membrane translocation. Structure 9:869–880PubMedCrossRefGoogle Scholar
  15. Han S-O, Kommaddi RP, Shenoy SK (2013) Distinct roles for β-arrestin2 and arrestin-domain-containing proteins in β2 adrenergic receptor trafficking. EMBO Rep 14:164–171PubMedCrossRefGoogle Scholar
  16. Hirsch JA, Schubert C, Gurevich VV, Sigler PB (1999) The 2.8 Å crystal structure of visual arrestin: a model for arrestin’s regulation. Cell 97:257–269PubMedCrossRefGoogle Scholar
  17. Houndolo T, Boulay P, Claing A (2005) G protein-coupled receptor endocytosis in ADP-ribosylation factor 6-depleted cells. J Biol Chem 280:5598–5604PubMedCrossRefGoogle Scholar
  18. Kang DS, Kern RC, Puthenveedu MA, von Zastrow M, Williams JC, Benovic JL (2009) Structure of an arrestin2-clathrin complex reveals a novel clathrin binding domain that modulates receptor trafficking. J Biol Chem 284:29860–29872PubMedCentralPubMedCrossRefGoogle Scholar
  19. Kim YM, Benovic JL (2002) Differential roles of arrestin-2 interaction with clathrin and adaptor protein 2 in G protein-coupled receptor trafficking. J Biol Chem 277:30760–30768PubMedCrossRefGoogle Scholar
  20. Kirchhausen T (2000) Clathrin. Annu Rev Biochem 69:699–727PubMedCrossRefGoogle Scholar
  21. Krupnick JG, Benovic JL (1998) The role of receptor kinases and arrestins in G protein-coupled receptor regulation. Annu Rev Pharmacol Toxicol 38:289–319PubMedCrossRefGoogle Scholar
  22. Krupnick JG, Goodman OB Jr, Keen JH, Benovic JL (1997) Arrestin/clathrin interaction. Localization of the clathrin binding domain of nonvisual arrestins to the carboxy terminus. J Biol Chem 272:15011–15016PubMedCrossRefGoogle Scholar
  23. Laporte SA, Oakley RH, Zhang J, Holt JA, Ferguson SS, Caron MG, Barak LS (1999) The β2-adrenergic receptor/beta-arrestin complex recruits the clathrin adaptor AP-2 during endocytosis. Proc Natl Acad Sci U S A 96:3712–3717PubMedCentralPubMedCrossRefGoogle Scholar
  24. Laporte SA, Oakley RH, Holt JA, Barak LS, Caron MG (2000) The interaction of β-arrestin with the AP-2 adaptor is required for the clustering of β2-adrenergic receptor into clathrin-coated pits. J Biol Chem 275:23120–23126PubMedCrossRefGoogle Scholar
  25. Macia E, Partisani M, Paleotti O, Luton F, Franco M (2012) Arf6 negatively controls the rapid recycling of the β2 adrenergic receptor. J Cell Sci 125:4026–4035PubMedCrossRefGoogle Scholar
  26. Malik R, Marchese A (2010) Arrestin-2 interacts with the endosomal sorting complex required for transport machinery to modulate endosomal sorting of CXCR4. Mol Biol Cell 21:2529–2541PubMedCentralPubMedCrossRefGoogle Scholar
  27. Marchese A, Benovic JL (2001) Agonist-promoted ubiquitination of the G-protein-coupled receptor CXCR4 mediates lysosomal sorting. J Biol Chem 276:45509–45512PubMedCrossRefGoogle Scholar
  28. Marchese A, Trejo J (2013) Ubiquitin-dependent regulation of G protein-coupled receptor trafficking and signaling. Cell Signal 25:707–716PubMedCrossRefGoogle Scholar
  29. Marion S, Fralish GB, Laporte S, Caron MG, Barak LS (2007) N-terminal tyrosine modulation of the endocytic adaptor function of the beta-arrestins. J Biol Chem 282:18937–18944PubMedCrossRefGoogle Scholar
  30. McDonald PH, Cote NL, Lin F-T, Premont RT, Pitcher JA, Lefkowitz RJ (1999) Identification of NSF as a β-arrestin1-binding protein. J Biol Chem 274:10677–10680PubMedCrossRefGoogle Scholar
  31. McMahon HT, Boucrot E (2011) Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol 12:517–533PubMedCrossRefGoogle Scholar
  32. Milano SK, Pace HC, Kim Y-M, Brenner C, Benovic JL (2002) Scaffolding functions of arrestin-2 revealed by crystal structure and mutagenesis. Biochemistry 41:3321–3328PubMedCrossRefGoogle Scholar
  33. Milano SK, Kim Y-M, Stefano FP, Benovic JL, Brenner C (2006) Nonvisual arrestin oligomerization and cellular localization are regulated by inositol hexakisphosphate binding. J Biol Chem 281:9812–9823PubMedCrossRefGoogle Scholar
  34. Moore CAC, Milano SK, Benovic JL (2007) Regulation of receptor trafficking by GRKs and arrestins. Annu Rev Physiol 69:451–482PubMedCrossRefGoogle Scholar
  35. Mukherjee S, Gurevich VV, Jones JCR, Casanova JE, Frank SR, Maizels ET, Bader M-F, Kahn RA, Palczewski K, Aktories K, Hunzicker-Dunn M (2000) The ADP ribosylation factor nucleotide exchange factor ARNO promotes β-arrestin release necessary for luteinizing hormone/choriogonadotropin receptor desensitization. Proc Natl Acad Sci USA 97:5901–5906PubMedCentralPubMedCrossRefGoogle Scholar
  36. Naga Prasad SV, Laporte SA, Chamberlain D, Caron MG, Barak L, Rockman HA (2002) Phosphoinositide 3-kinase regulates β2-adrenergic receptor endocytosis by AP-2 recruitment to the receptor/beta-arrestin complex. J Cell Biol 158:563–575PubMedCentralPubMedCrossRefGoogle Scholar
  37. Nelson CD, Kovacs JJ, Nobles KN, Whalen EJ, Lefkowitz RJ (2008) β-arrestin scaffolding of phosphatidylinositol 4-phosphate 5-kinase Iα promotes agonist-stimulated sequestration of the β2-adrenergic receptor. J Biol Chem 283:21093–21101PubMedCentralPubMedCrossRefGoogle Scholar
  38. Nobles KN, Guan Z, Xiao K, Oas TG, Lefkowitz RJ (2007) The active conformation of β-arrestin1: direct evidence for the phosphate sensor in the N-domain and conformational differences in the active states of beta-arrestins1 and -2. J Biol Chem 282:21370–21381PubMedCrossRefGoogle Scholar
  39. Oakley RH, Laporte SA, Holt JA, Barak LS, Caron MG (1999) Association of β-arrestin with G protein-coupled receptors during clathrin-mediated endocytosis dictates the profile of receptor resensitization. J Biol Chem 274:32248–32257PubMedCrossRefGoogle Scholar
  40. Oakley RH, Laporte SA, Holt JA, Barak LS, Caron MG (2001) Molecular determinants underlying the formation of stable intracellular G protein-coupled receptor-β-arrestin complexes after receptor endocytosis. J Biol Chem 276:19452–19460PubMedCrossRefGoogle Scholar
  41. Owen DJ, Collins BM, Evans PR (2004) Adaptors for clathrin coats: structure and function. Annu Rev Cell Dev Biol 20:153–191PubMedCrossRefGoogle Scholar
  42. Ozawa K, Whalen EJ, Nelson CD, Mu Y, Hess DT, Lefkowitz RJ, Stamler JS (2008) S-nitrosylation of β-arrestin regulates β-adrenergic receptor trafficking. Mol Cell 31:395–405PubMedCentralPubMedCrossRefGoogle Scholar
  43. Palczewski K, Buczyłko J, Imami NR, McDowell JH, Hargrave PA (1991) Role of the carboxyl-terminal region of arrestin in binding to phosphorylated rhodopsin. J Biol Chem 266:15334–15339PubMedGoogle Scholar
  44. Sasakawa N, Sharif M, Hanley MR (1995) Metabolism and biological activities of inositol pentakisphosphate and inositol hexakisphosphate. Biochem Pharmacol 50:137–146PubMedCrossRefGoogle Scholar
  45. Schmid EM, Ford MG, Burtey A, Praefcke GJ, Peak-Chew SY, Mills IG, Benmerah A, McMahon HT (2006) Role of the AP2 β-appendage hub in recruiting partners for clathrin-coated vesicle assembly. PLoS Biol 4:1532–1548Google Scholar
  46. Shenoy SK, Lefkowitz RJ (2003) Trafficking patterns of beta-arrestin and G protein-coupled receptors determined by the kinetics of β-arrestin deubiquitination. J Biol Chem 278:14498–14506PubMedCrossRefGoogle Scholar
  47. Shenoy SK, Lefkowitz RJ (2011) β-arrestin-mediated receptor trafficking and signal transduction. Trends Pharmacol Sci 32:521–533PubMedCentralPubMedCrossRefGoogle Scholar
  48. Shenoy SK, McDonald PH, Kohout TA, Lefkowitz RJ (2001) Regulation of receptor fate by ubiquitination of activated β2-adrenergic receptor and β-arrestin. Science 294:1307–1313PubMedCrossRefGoogle Scholar
  49. Shenoy SK, Xiao K, Venkataramanan V, Snyder PM, Freedman NJ, Weissman AM (2008) Nedd4 mediates agonist-dependent ubiquitination, lysosomal targeting, and degradation of the β2-adrenergic receptor. J Biol Chem 283:22166–22176PubMedCentralPubMedCrossRefGoogle Scholar
  50. Shenoy SK, Modi AS, Shukla AK, Xiao K, Berthouze M, Ahn S, Wilkinson KD, Miller WE, Lefkowitz RJ (2009) β-arrestin-dependent signaling and trafficking of 7-transmembrane receptors is reciprocally regulated by the deubiquitinase USP33 and the E3 ligase Mdm2. Proc Natl Acad Sci USA 106:6650–6655PubMedCentralPubMedCrossRefGoogle Scholar
  51. Sterne-Marr R, Gurevich VV, Goldsmith P, Bodine RC, Sanders C, Donoso LA, Benovic JL (1993) Polypeptide variants of β-arrestin and arrestin3. J Biol Chem 268:15640–15648PubMedGoogle Scholar
  52. Storez H, Scott MG, Issafras H, Burtey A, Benmerah A, Muntaner O, Piolot T, Tramier M, Coppey-Moisan M, Bouvier M, Labbe-Jullie C, Marullo S (2005) Homo- and hetero-oligomerization of β-arrestins in living cells. J Biol Chem 280:40210–40215PubMedCrossRefGoogle Scholar
  53. Sutton RB, Vishnivetskiy SA, Robert J, Hanson SM, Raman D, Knox BE, Kono M, Navarro J, Gurevich VV (2005) Crystal structure of cone arrestin at 2.3 Å: evolution of receptor specificity. J Mol Biol 354:1069–1080PubMedCrossRefGoogle Scholar
  54. ter Haar E, Harrison SC, Kirchhausen T (2000) Peptide-in-groove interactions link target proteins to the β-propeller of clathrin. Proc Natl Acad Sci U S A 97:1096–1100PubMedCentralPubMedCrossRefGoogle Scholar
  55. Tóth DJ, Tóth JT, Gulyás G, Balla A, Balla T, Hunyady L, Varnai P (2012) Acute depletion of plasma membrane phosphatidylinositol 4,5-bisphosphate impairs specific steps in endocytosis of the G-protein-coupled receptor. J Cell Sci 125:2185–2197PubMedCentralPubMedCrossRefGoogle Scholar
  56. Vishnivetskiy SA, Paz CL, Schubert C, Hirsch JA, Sigler PB, Gurevich VV (1999) How does arrestin respond to the phosphorylated state of rhodopsin? J Biol Chem 274:11451–11454PubMedCrossRefGoogle Scholar
  57. Vishnivetskiy SA, Schubert C, Climaco GC, Gurevich YV, Velez M-G, Gurevich VV (2000) An additional phosphate-binding element in arrestin. J Biol Chem 275:41049–41057PubMedCrossRefGoogle Scholar
  58. Vishnivetskiy SA, Gimenez LE, Francis DJ, Hanson SM, Hubbell WL, Klug CS, Gurevich VV (2011) Few residues within an extensive binding interface drive receptor interaction and determine the specificity of arrestin proteins. J Biol Chem 286:24288–24299PubMedCentralPubMedCrossRefGoogle Scholar
  59. Watt S, Kular G, Fleming I, Downes C, Lucocq J (2002) Subcellular localization of phosphatidylinositol 4,5-bisphosphate using the pleckstrin homology domain of phospholipase C δ1. Biochem J 363:657–666PubMedCentralPubMedCrossRefGoogle Scholar
  60. Wyatt D, Malik R, Vesecky AC, Marchese A (2011) Small ubiquitin-like modifier modification of arrestin-3 regulates receptor trafficking. J Biol Chem 286:3884–3893PubMedCentralPubMedCrossRefGoogle Scholar
  61. Xiao K, Shenoy SK, Nobles K, Lefkowitz RJ (2004) Activation-dependent conformational changes in β-arrestin 2. J Biol Chem 279:55744–55753PubMedCrossRefGoogle Scholar
  62. Zhan X, Gimenez LE, Gurevich VV, Spiller BW (2011) Crystal structure of arrestin-3 reveals the basis of the difference in receptor binding between two non-visual subtypes. J Mol Biol 406:467–478PubMedCentralPubMedCrossRefGoogle Scholar
  63. Zoncu R, Perera RM, Sebastian R, Nakatsu F, Chen H, Balla T, Ayala G, Toomre D, Camilli PVD (2007) Loss of endocytic clathrin-coated pits upon acute depletion of phosphatidylinositol 4,5-bisphosphate. Proc Natl Acad Sci USA 104:3793–3798PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Xufan Tian
    • 1
  • Dong Soo Kang
    • 1
  • Jeffrey L. Benovic
    • 1
    Email author
  1. 1.Department of Biochemistry and Molecular BiologyThomas Jefferson UniversityPhiladelphiaUSA

Personalised recommendations