Arrestin Interaction with E3 Ubiquitin Ligases and Deubiquitinases: Functional and Therapeutic Implications

  • Sudha K. ShenoyEmail author
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 219)


Arrestins constitute a small family of four homologous adaptor proteins (arrestins 1–4), which were originally identified as inhibitors of signal transduction elicited by the seven-transmembrane G protein-coupled receptors. Currently arrestins (especially arrestin2 and arrestin3; also called β-arrestin1 and β-arrestin2) are known to be activators of cell signaling and modulators of endocytic trafficking. Arrestins mediate these effects by binding to not only diverse cell-surface receptors but also by associating with a variety of critical signaling molecules in different intracellular compartments. Thus, the functions of arrestins are multifaceted and demand interactions with a host of proteins and require an array of selective conformations. Furthermore, receptor ligands that specifically induce signaling via arrestins are being discovered and their physiological roles are emerging. Recent evidence suggests that the activity of arrestin is regulated in space and time by virtue of its dynamic association with specific enzymes of the ubiquitination pathway. Ubiquitin-dependent, arrestin-mediated signaling could serve as a potential platform for developing novel therapeutic strategies to target transmembrane signaling and physiological responses.


Ubiquitin Beta-arrestin G protein coupled receptor Endocytosis Deubiquitinase Lysosomes 



This work was supported by an NIH grant HL 080525 (S.K.S) and a grant-in-aid from the American Heart Association (S.K.S).


  1. Ahmed MR, Zhan X, Song X, Kook S, Gurevich VV, Gurevich EV (2011) Ubiquitin ligase parkin promotes Mdm2-arrestin interaction but inhibits arrestin ubiquitination. Biochemistry 50:3749–3763PubMedCentralPubMedCrossRefGoogle Scholar
  2. Alonso V, Friedman PA (2013) Minireview: ubiquitination-regulated G protein-coupled receptor signaling and trafficking. Mol Endocrinol 27:558–572PubMedCrossRefGoogle Scholar
  3. Beaulieu JM, Gainetdinov RR, Caron MG (2009) Akt/GSK3 signaling in the action of psychotropic drugs. Annu Rev Pharmacol Toxicol 49:327–347PubMedCrossRefGoogle Scholar
  4. Becuwe M, Herrador A, Haguenauer-Tsapis R, Vincent O, Leon S (2012) Ubiquitin-mediated regulation of endocytosis by proteins of the arrestin family. Biochem Res Int 2012:242764PubMedCentralPubMedGoogle Scholar
  5. Berthouze M, Venkataramanan V, Li Y, Shenoy SK (2009) The deubiquitinases USP33 and USP20 coordinate beta2 adrenergic receptor recycling and resensitization. EMBO J 28:1684–1696PubMedCentralPubMedCrossRefGoogle Scholar
  6. Bhandari D, Trejo J, Benovic JL, Marchese A (2007) Arrestin-2 interacts with the ubiquitin-protein isopeptide ligase atrophin-interacting protein 4 and mediates endosomal sorting of the chemokine receptor CXCR4. J Biol Chem 282:36971–36979PubMedCrossRefGoogle Scholar
  7. Busillo JM, Armando S, Sengupta R, Meucci O, Bouvier M, Benovic JL (2010) Site-specific phosphorylation of CXCR4 is dynamically regulated by multiple kinases and results in differential modulation of CXCR4 signaling. J Biol Chem 285:7805–7817PubMedCentralPubMedCrossRefGoogle Scholar
  8. Chen ZJ (2012) Ubiquitination in signaling to and activation of IKK. Immunol Rev 246:95–106PubMedCentralPubMedCrossRefGoogle Scholar
  9. Claing A, Laporte SA, Caron MG, Lefkowitz RJ (2002) Endocytosis of G protein-coupled receptors: roles of G protein-coupled receptor kinases and beta-arrestin proteins. Prog Neurobiol 66:61–79PubMedCrossRefGoogle Scholar
  10. Dalrymple MB, Jaeger WC, Eidne KA, Pfleger KD (2011) Temporal profiling of orexin receptor-arrestin-ubiquitin complexes reveals differences between receptor subtypes. J Biol Chem 286:16726–16733PubMedCentralPubMedCrossRefGoogle Scholar
  11. Dang J, Kuo ML, Eischen CM, Stepanova L, Sherr CJ, Roussel MF (2002) The RING domain of Mdm2 can inhibit cell proliferation. Cancer Res 62:1222–1230PubMedGoogle Scholar
  12. Davydov IV, Woods D, Safiran YJ, Oberoi P, Fearnhead HO, Fang S, Jensen JP, Weissman AM, Kenten JH, Vousden KH (2004) Assay for ubiquitin ligase activity: high-throughput screen for inhibitors of HDM2. J Biomol Screen 9:695–703PubMedCrossRefGoogle Scholar
  13. Decaillot FM, Rozenfeld R, Gupta A, Devi LA (2008) Cell surface targeting of mu-delta opioid receptor heterodimers by RTP4. Proc Natl Acad Sci USA 105:16045–16050PubMedCentralPubMedCrossRefGoogle Scholar
  14. Deshaies RJ (1999) SCF and Cullin/Ring H2-based ubiquitin ligases. Annu Rev Cell Dev Biol 15:435–467PubMedCrossRefGoogle Scholar
  15. DeWire SM, Violin JD (2011) Biased ligands for better cardiovascular drugs: dissecting G-protein-coupled receptor pharmacology. Circ Res 109:205–216PubMedCrossRefGoogle Scholar
  16. DeWire SM, Ahn S, Lefkowitz RJ, Shenoy SK (2007) Beta-arrestins and cell signaling. Annu Rev Physiol 69:483–510PubMedCrossRefGoogle Scholar
  17. DeWire SM, Kim J, Whalen EJ, Ahn S, Chen M, Lefkowitz RJ (2008) Beta-arrestin-mediated signaling regulates protein synthesis. J Biol Chem 283:10611–10620PubMedCentralPubMedCrossRefGoogle Scholar
  18. Dores MR, Trejo J (2012) Ubiquitination of G protein-coupled receptors: functional implications and drug discovery. Mol Pharmacol 82:563–570PubMedCentralPubMedCrossRefGoogle Scholar
  19. Eldridge AG, O’Brien T (2010) Therapeutic strategies within the ubiquitin proteasome system. Cell Death Differ 17:4–13PubMedCrossRefGoogle Scholar
  20. Fang S, Jensen JP, Ludwig RL, Vousden KH, Weissman AM (2000) Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53. J Biol Chem 275:8945–8951PubMedCrossRefGoogle Scholar
  21. Ferguson SS (2001) Evolving concepts in G protein-coupled receptor endocytosis: the role in receptor desensitization and signaling. Pharmacol Rev 53:1–24PubMedGoogle Scholar
  22. Gesty-Palmer D, Flannery P, Yuan L, Corsino L, Spurney R, Lefkowitz RJ, Luttrell LM (2009) A β-arrestin–biased agonist of the parathyroid hormone receptor (PTH1R) promotes bone formation independent of G protein activation. Sci Transl Med 1(1):1ra1. doi: 10.1126/scitranslmed.3000071 PubMedCentralPubMedGoogle Scholar
  23. Girnita L, Shenoy SK, Sehat B, Vasilcanu R, Girnita A, Lefkowitz RJ, Larsson O (2005) {beta}-Arrestin is crucial for ubiquitination and down-regulation of the insulin-like growth factor-1 receptor by acting as adaptor for the MDM2 E3 ligase. J Biol Chem 280:24412–24419PubMedCrossRefGoogle Scholar
  24. Grasberger BL, Lu T, Schubert C, Parks DJ, Carver TE, Koblish HK, Cummings MD, LaFrance LV, Milkiewicz KL, Calvo RR, Maguire D, Lattanze J, Franks CF, Zhao S, Ramachandren K, Bylebyl GR, Zhang M, Manthey CL, Petrella EC, Pantoliano MW, Deckman IC, Spurlino JC, Maroney AC, Tomczuk BE, Molloy CJ, Bone RF (2005) Discovery and cocrystal structure of benzodiazepinedione HDM2 antagonists that activate p53 in cells. J Med Chem 48:909–912PubMedCrossRefGoogle Scholar
  25. Groer CE, Tidgewell K, Moyer RA, Harding WW, Rothman RB, Prisinzano TE, Bohn LM (2007) An opioid agonist that does not induce mu-opioid receptor–arrestin interactions or receptor internalization. Mol Pharmacol 71:549–557PubMedCrossRefGoogle Scholar
  26. Groer CE, Schmid CL, Jaeger AM, Bohn LM (2011) Agonist-directed interactions with specific beta-arrestins determine mu-opioid receptor trafficking, ubiquitination, and dephosphorylation. J Biol Chem 286:31731–31741PubMedCentralPubMedCrossRefGoogle Scholar
  27. Gurevich VV, Gurevich EV (2006) The structural basis of arrestin-mediated regulation of G-protein-coupled receptors. Pharmacol Ther 110:465–502PubMedCentralPubMedCrossRefGoogle Scholar
  28. Gurevich VV, Gurevich EV (2010) Custom-designed proteins as novel therapeutic tools? The case of arrestins. Expert Rev Mol Med 12:e13PubMedCentralPubMedCrossRefGoogle Scholar
  29. Gurevich VV, Gurevich EV, Cleghorn WM (2008) Arrestins as multi-functional signaling adaptors. Handb Exp Pharmacol 15–37Google Scholar
  30. Han SO, Xiao K, Kim J, Wu JH, Wisler JW, Nakamura N, Freedman NJ, Shenoy SK (2012) MARCH2 promotes endocytosis and lysosomal sorting of carvedilol-bound beta(2)-adrenergic receptors. J Cell Biol 199:817–830PubMedCentralPubMedCrossRefGoogle Scholar
  31. Han SO, Kommaddi RP, Shenoy SK (2013) Distinct roles for beta-arrestin2 and arrestin-domain-containing proteins in beta(2) adrenergic receptor trafficking. EMBO Rep 14:164–171PubMedCrossRefGoogle Scholar
  32. Hara MR, Kovacs JJ, Whalen EJ, Rajagopal S, Strachan RT, Grant W, Towers AJ, Williams B, Lam CM, Xiao K, Shenoy SK, Gregory SG, Ahn S, Duckett DR, Lefkowitz RJ (2011) A stress response pathway regulates DNA damage through beta2-adrenoreceptors and beta-arrestin-1. Nature 477:349–353PubMedCentralPubMedCrossRefGoogle Scholar
  33. Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479PubMedCrossRefGoogle Scholar
  34. Hideshima T, Richardson P, Chauhan D, Palombella VJ, Elliott PJ, Adams J, Anderson KC (2001) The proteasome inhibitor PS-341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells. Cancer Res 61:3071–3076PubMedGoogle Scholar
  35. Hori K, Sen A, Kirchhausen T, Artavanis-Tsakonas S (2011) Synergy between the ESCRT-III complex and Deltex defines a ligand-independent Notch signal. J Cell Biol 195:1005–1015PubMedCentralPubMedCrossRefGoogle Scholar
  36. Huang L, Kinnucan E, Wang G, Beaudenon S, Howley PM, Huibregtse JM, Pavletich NP (1999) Structure of an E6AP-UbcH7 complex: insights into ubiquitination by the E2-E3 enzyme cascade. Science 286:1321–1326PubMedCrossRefGoogle Scholar
  37. Ingham RJ, Colwill K, Howard C, Dettwiler S, Lim CS, Yu J, Hersi K, Raaijmakers J, Gish G, Mbamalu G, Taylor L, Yeung B, Vassilovski G, Amin M, Chen F, Matskova L, Winberg G, Ernberg I, Linding R, O’Donnell P, Starostine A, Keller W, Metalnikov P, Stark C, Pawson T (2005) WW domains provide a platform for the assembly of multiprotein networks. Mol Cell Biol 25:7092–7106PubMedCentralPubMedCrossRefGoogle Scholar
  38. Issaeva N, Bozko P, Enge M, Protopopova M, Verhoef LG, Masucci M, Pramanik A, Selivanova G (2004) Small molecule RITA binds to p53, blocks p53-HDM-2 interaction and activates p53 function in tumors. Nat Med 10:1321–1328PubMedCrossRefGoogle Scholar
  39. Jackson PK, Eldridge AG, Freed E, Furstenthal L, Hsu JY, Kaiser BK, Reimann JD (2000) The lore of the RINGs: substrate recognition and catalysis by ubiquitin ligases. Trends Cell Biol 10:429–439PubMedCrossRefGoogle Scholar
  40. Joazeiro CA, Weissman AM (2000) RING finger proteins: mediators of ubiquitin ligase activity. Cell 102:549–552PubMedCrossRefGoogle Scholar
  41. Johnson ES (2004) Protein modification by SUMO. Annu Rev Biochem 73:355–382PubMedCrossRefGoogle Scholar
  42. Katzmann DJ, Babst M, Emr SD (2001) Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT-I. Cell 106:145–155PubMedCrossRefGoogle Scholar
  43. Lai Z, Yang T, Kim YB, Sielecki TM, Diamond MA, Strack P, Rolfe M, Caligiuri M, Benfield PA, Auger KR, Copeland RA (2002) Differentiation of Hdm2-mediated p53 ubiquitination and Hdm2 autoubiquitination activity by small molecular weight inhibitors. Proc Natl Acad Sci USA 99:14734–14739PubMedCentralPubMedCrossRefGoogle Scholar
  44. Lakshmikanthan V, Zou L, Kim JI, Michal A, Nie Z, Messias NC, Benovic JL, Daaka Y (2009) Identification of betaArrestin2 as a corepressor of androgen receptor signaling in prostate cancer. Proc Natl Acad Sci USA 106:9379–9384PubMedCentralPubMedCrossRefGoogle Scholar
  45. Lefkowitz RJ, Shenoy SK (2005) Transduction of receptor signals by beta-arrestins. Science 308:512–517PubMedCrossRefGoogle Scholar
  46. Leon S, Haguenauer-Tsapis R (2009) Ubiquitin ligase adaptors: regulators of ubiquitylation and endocytosis of plasma membrane proteins. Exp Cell Res 315:1574–1583PubMedCrossRefGoogle Scholar
  47. Li X, Baillie GS, Houslay MD (2009) Mdm2 directs the ubiquitination of beta-arrestin-sequestered cAMP phosphodiesterase-4D5. J Biol Chem 284:16170–16182PubMedCentralPubMedCrossRefGoogle Scholar
  48. Luttrell LM, Kenakin TP (2011) Refining efficacy: allosterism and bias in G protein-coupled receptor signaling. Methods Mol Biol 756:3–35PubMedCrossRefGoogle Scholar
  49. Luttrell LM, Lefkowitz RJ (2002) The role of beta-arrestins in the termination and transduction of G-protein-coupled receptor signals. J Cell Sci 115:455–465PubMedGoogle Scholar
  50. Martin NP, Lefkowitz RJ, Shenoy SK (2003) Regulation of V2 vasopressin receptor degradation by agonist-promoted ubiquitination. J Biol Chem 278:45954–45959PubMedCrossRefGoogle Scholar
  51. Metzger MB, Hristova VA, Weissman AM (2012) HECT and RING finger families of E3 ubiquitin ligases at a glance. J Cell Sci 125:531–537PubMedCentralPubMedCrossRefGoogle Scholar
  52. Mishra SK, Keyel PA, Edeling MA, Dupin AL, Owen DJ, Traub LM (2005) Functional dissection of an AP-2 beta2 appendage-binding sequence within the autosomal recessive hypercholesterolemia protein. J Biol Chem 280:19270–19280PubMedCrossRefGoogle Scholar
  53. Moore CA, Milano SK, Benovic JL (2007) Regulation of receptor trafficking by GRKs and arrestins. Annu Rev Physiol 69:451–482PubMedCrossRefGoogle Scholar
  54. Mukhopadhyay D, Riezman H (2007) Proteasome-independent functions of ubiquitin in endocytosis and signaling. Science 315:201–205PubMedCrossRefGoogle Scholar
  55. Nicholson B, Marblestone JG, Butt TR, Mattern MR (2007) Deubiquitinating enzymes as novel anticancer targets. Future Oncol 3:191–199PubMedCentralPubMedCrossRefGoogle Scholar
  56. Nicholson B, Leach CA, Goldenberg SJ, Francis DM, Kodrasov MP, Tian X, Shanks J, Sterner DE, Bernal A, Mattern MR, Wilkinson KD, Butt TR (2008) Characterization of ubiquitin and ubiquitin-like-protein isopeptidase activities. Protein Sci 17:1035–1043PubMedCentralPubMedCrossRefGoogle Scholar
  57. Nobles KN, Xiao K, Ahn S, Shukla AK, Lam CM, Rajagopal S, Strachan RT, Huang TY, Bressler EA, Hara MR, Shenoy SK, Gygi SP, Lefkowitz RJ (2011) Distinct phosphorylation sites on the beta(2)-adrenergic receptor establish a barcode that encodes differential functions of beta-arrestin. Sci Signal 4:ra51PubMedCentralPubMedGoogle Scholar
  58. Noma T, Lemaire A, Naga Prasad SV, Barki-Harrington L, Tilley DG, Chen J, Le Corvoisier P, Violin JD, Wei H, Lefkowitz RJ, Rockman HA (2007) Beta-arrestin-mediated beta1-adrenergic receptor transactivation of the EGFR confers cardioprotection. J Clin Invest 117:2445–2458PubMedCentralPubMedCrossRefGoogle Scholar
  59. Ogunjimi AA, Briant DJ, Pece-Barbara N, Le Roy C, Di Guglielmo GM, Kavsak P, Rasmussen RK, Seet BT, Sicheri F, Wrana JL (2005) Regulation of Smurf2 ubiquitin ligase activity by anchoring the E2 to the HECT domain. Mol Cell 19:297–308PubMedCrossRefGoogle Scholar
  60. Perroy J, Pontier S, Charest PG, Aubry M, Bouvier M (2004) Real-time monitoring of ubiquitination in living cells by BRET. Nat Methods 1:203–208PubMedCrossRefGoogle Scholar
  61. Rajagopal S, Rajagopal K, Lefkowitz RJ (2010) Teaching old receptors new tricks: biasing seven-transmembrane receptors. Nat Rev Drug Discov 9:373–386PubMedCentralPubMedCrossRefGoogle Scholar
  62. Reiter E, Ahn S, Shukla AK, Lefkowitz RJ (2012) Molecular mechanism of beta-arrestin-biased agonism at seven-transmembrane receptors. Annu Rev Pharmacol Toxicol 52:179–197PubMedCentralPubMedCrossRefGoogle Scholar
  63. Reyes-Turcu FE, Ventii KH, Wilkinson KD (2009) Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annu Rev Biochem 78:363–397PubMedCrossRefGoogle Scholar
  64. Salcedo A, Mayor F Jr, Penela P (2006) Mdm2 is involved in the ubiquitination and degradation of G-protein-coupled receptor kinase 2. EMBO J 25:4752–4762PubMedCentralPubMedCrossRefGoogle Scholar
  65. Shangary S, Wang S (2009) Small-molecule inhibitors of the MDM2-p53 protein-protein interaction to reactivate p53 function: a novel approach for cancer therapy. Annu Rev Pharmacol Toxicol 49:223–241PubMedCentralPubMedCrossRefGoogle Scholar
  66. Shenoy SK (2007) Seven-transmembrane receptors and ubiquitination. Circ Res 100:1142–1154PubMedCentralPubMedCrossRefGoogle Scholar
  67. Shenoy SK, Lefkowitz RJ (2003) Trafficking patterns of beta-arrestin and G protein-coupled receptors determined by the kinetics of beta-arrestin deubiquitination. J Biol Chem 278:14498–14506PubMedCrossRefGoogle Scholar
  68. Shenoy SK, Lefkowitz RJ (2005) Receptor-specific ubiquitination of beta-arrestin directs assembly and targeting of seven-transmembrane receptor signalosomes. J Biol Chem 280:15315–15324PubMedCrossRefGoogle Scholar
  69. Shenoy SK, Lefkowitz RJ (2011) beta-Arrestin-mediated receptor trafficking and signal transduction. Trends Pharmacol Sci 32:521–533PubMedCentralPubMedCrossRefGoogle Scholar
  70. Shenoy SK, McDonald PH, Kohout TA, Lefkowitz RJ (2001) Regulation of receptor fate by ubiquitination of activated beta 2-adrenergic receptor and beta-arrestin. Science 294:1307–1313PubMedCrossRefGoogle Scholar
  71. Shenoy SK, Barak LS, Xiao K, Ahn S, Berthouze M, Shukla AK, Luttrell LM, Lefkowitz RJ (2007) Ubiquitination of beta-arrestin links seven-transmembrane receptor endocytosis and ERK activation. J Biol Chem 282:29549–29562PubMedCentralPubMedCrossRefGoogle Scholar
  72. Shenoy SK, Xiao K, Venkataramanan V, Snyder PM, Freedman NJ, Weissman AM (2008) Nedd4 Mediates Agonist-dependent Ubiquitination, Lysosomal Targeting, and Degradation of the {beta}2-Adrenergic Receptor. J Biol Chem 283:22166–22176PubMedCentralPubMedCrossRefGoogle Scholar
  73. Shenoy SK, Modi AS, Shukla AK, Xiao K, Berthouze M, Ahn S, Wilkinson KD, Miller WE, Lefkowitz RJ (2009) Beta-arrestin-dependent signaling and trafficking of 7-transmembrane receptors is reciprocally regulated by the deubiquitinase USP33 and the E3 ligase Mdm2. Proc Natl Acad Sci USA 106:6650–6655PubMedCentralPubMedCrossRefGoogle Scholar
  74. Shukla AK, Kim J, Ahn S, Xiao K, Shenoy SK, Liedtke W, Lefkowitz RJ (2010) Arresting a transient receptor potential (TRP) channel: beta-arrestin 1 mediates ubiquitination and functional down-regulation of TRPV4. J Biol Chem 285:30115–30125PubMedCentralPubMedCrossRefGoogle Scholar
  75. Shukla AK, Xiao K, Lefkowitz RJ (2011) Emerging paradigms of beta-arrestin-dependent seven transmembrane receptor signaling. Trends Biochem Sci 36:457–469PubMedCentralPubMedCrossRefGoogle Scholar
  76. Simonin A, Fuster D (2010) Nedd4-1 and beta-arrestin-1 are key regulators of Na+/H + exchanger 1 ubiquitylation, endocytosis, and function. J Biol Chem 285:38293–38303PubMedCentralPubMedCrossRefGoogle Scholar
  77. Teicher BA, Ara G, Herbst R, Palombella VJ, Adams J (1999) The proteasome inhibitor PS-341 in cancer therapy. Clin Cancer Res 5:2638–2645PubMedGoogle Scholar
  78. Urban JD, Clarke WP, von Zastrow M, Nichols DE, Kobilka B, Weinstein H, Javitch JA, Roth BL, Christopoulos A, Sexton PM, Miller KJ, Spedding M, Mailman RB (2007) Functional selectivity and classical concepts of quantitative pharmacology. J Pharmacol Exp Ther 320:1–13PubMedCrossRefGoogle Scholar
  79. Vassilev LT (2007) MDM2 inhibitors for cancer therapy. Trends Mol Med 13:23–31PubMedCrossRefGoogle Scholar
  80. Verdecia MA, Joazeiro CA, Wells NJ, Ferrer JL, Bowman ME, Hunter T, Noel JP (2003) Conformational flexibility underlies ubiquitin ligation mediated by the WWP1 HECT domain E3 ligase. Mol Cell 11:249–259PubMedCrossRefGoogle Scholar
  81. Violin JD, Soergel DG, Boerrigter G, Burnett JC, Jr., Lark MW (2013) GPCR biased ligands as novel heart failure therapeutics. Trends Cardiovasc Med 23(7):242–249. doi:  10.1016/j.tcm.2013.01.002. Epub 2013 Mar 15Google Scholar
  82. Whalen EJ, Rajagopal S, Lefkowitz RJ (2011) Therapeutic potential of beta-arrestin- and G protein-biased agonists. Trends Mol Med 17:126–139PubMedCentralPubMedCrossRefGoogle Scholar
  83. Wisler JW, DeWire SM, Whalen EJ, Violin JD, Drake MT, Ahn S, Shenoy SK, Lefkowitz RJ (2007) A unique mechanism of beta-blocker action: carvedilol stimulates beta-arrestin signaling. Proc Natl Acad Sci USA 104:16657–16662PubMedCentralPubMedCrossRefGoogle Scholar
  84. Wyatt D, Malik R, Vesecky AC, Marchese A (2011) Small ubiquitin-like modifier modification of arrestin-3 regulates receptor trafficking. J Biol Chem 286:3884–3893PubMedCentralPubMedCrossRefGoogle Scholar
  85. Xiao K, Shenoy SK (2011) Beta2-adrenergic receptor lysosomal trafficking is regulated by ubiquitination of lysyl residues in two distinct receptor domains. J Biol Chem 286:12785–12795PubMedCentralPubMedCrossRefGoogle Scholar
  86. Yang Y, Ludwig RL, Jensen JP, Pierre SA, Medaglia MV, Davydov IV, Safiran YJ, Oberoi P, Kenten JH, Phillips AC, Weissman AM, Vousden KH (2005) Small molecule inhibitors of HDM2 ubiquitin ligase activity stabilize and activate p53 in cells. Cancer Cell 7:547–559PubMedCrossRefGoogle Scholar
  87. Zheng H, Worrall C, Shen H, Issad T, Seregard S, Girnita A, Girnita L (2012) Selective recruitment of G protein-coupled receptor kinases (GRKs) controls signaling of the insulin-like growth factor 1 receptor. Proc Natl Acad Sci USA 109:7055–7060PubMedCentralPubMedCrossRefGoogle Scholar
  88. Zidar DA, Violin JD, Whalen EJ, Lefkowitz RJ (2009) Selective engagement of G protein coupled receptor kinases (GRKs) encodes distinct functions of biased ligands. Proc Natl Acad Sci USA 106:9649–9654PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of MedicineDuke University Medical CenterDurhamUSA
  2. 2.Department of Cell BiologyDuke University Medical CenterDurhamUSA

Personalised recommendations