Real-Time Estimation of Planar Surfaces in Arbitrary Environments Using Microsoft Kinect Sensor

  • Francesco Castaldo
  • Vincenzo Lippiello
  • Francesco A. N. Palmieri
  • Bruno Siciliano
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8157)


We propose an algorithm, suitable for real-time robot applications, for modeling and reconstruction of complex scenes. The environment is seen as a collection of planes and the algorithm extracts in real time their parameters from the 3D point cloud provided by the Kinect sensor. The execution speed of the procedure depends on the desired reconstruction quality and on the complexity of the surroundings. Implementation issues are discussed and experiments on a real scene are included.


Microsoft Kinect Real-time 3D Reconstruction Planes extraction Point Cloud 


  1. 1.
    Leonard, J.J.: Durrant-Whyte: Simultaneous Map Building and Localization for an Autonomous Mobile Robot. In: IEEE/RSJ International Workshop on Intelligent Robots and Systems, IROS 1991, vol. 3, pp. 1442–1447 (1991)Google Scholar
  2. 2.
    Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotic (Intelligent Robotics and Autonomous Agents). The MIT Press (2005)Google Scholar
  3. 3.
    Gellert, W., Gottwald, S., Hellwich, M., Kastner, H., Kunstner, H.: VNR Concise Encyclopedia of Mathematics, 2nd edn. Springer (1990)Google Scholar
  4. 4.
    Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., Stuetzle, W.: Surface Reconstruction from Unorganized Points. In: ACM SIGGRAPH 1992 Proceedings, pp. 71–78 (1992)Google Scholar
  5. 5.
    Cazals, F., Giesen, J.: Delaunay triangulation based surface reconstruction: Ideas and algorithms. Rapport de recherche. INRIA (2004)Google Scholar
  6. 6.
    Vidal, R.: A Tutorial on Subspace Clustering. IEEE Signal Processing Magazine 28, 52–68 (2011)CrossRefGoogle Scholar
  7. 7.
    Martin, A., Fischler, B.R.C.: Random Sample Consensus: A Paradigm for Model Fitting with Application to Image Analysis and Automated Cartography. Comm. of the ACM 24(6), 381–395 (1981)CrossRefGoogle Scholar
  8. 8.
    Zuliani, M., Kenney, C.S., Manjunath, B.S.: The multiRANSAC algorithm and its application to detect planar homographies. In: Proceedings of the IEEE International Conference on Image Processing, Genova, IT (2005)Google Scholar
  9. 9.
    Method and System for Object Reconstruction (2007)Google Scholar
  10. 10.
    Depth Mapping using Projected Patterns (2008)Google Scholar
  11. 11.
    Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge (2003)Google Scholar
  12. 12.
    Main, R.: Study and Comparison of Various Image Edge Detection Techniques. In: Image Processing 2009, vol. 147002(3), pp. 1–12. Citeseer (2009)Google Scholar
  13. 13.
    Shafiri, M., Fathy, M., Mahmoud, M.T.: A classified and comparative study of edge detection algorithms. In: Proceedings of the International Conference on Information Technology: Coding and Computing, pp. 117–120 (2002)Google Scholar
  14. 14.
    Klaus, B., Horn, P.: Robot Vision. McGraw-Hill (1986)Google Scholar
  15. 15.
    Wall, M.E., Rechtsteiner, A., Rocha, L.M.: Singular value decomposition and principal component analysis. In: Berrar, D.P., Dubitzky, W., Granzow, M. (eds.) A Practical Approach to Microarray Data Analysis, pp. 91–109. Kluwer, Norwell (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Francesco Castaldo
    • 1
  • Vincenzo Lippiello
    • 2
  • Francesco A. N. Palmieri
    • 1
  • Bruno Siciliano
    • 1
  1. 1.Dipartimento di Ingegneria Industriale e dell’InformazioneSeconda Universitá degli Studi di NapoliAversaItaly
  2. 2.Dipartimento di Ingegneria Elettrica e Tecnologie dell’InformazioneUniversitá degli Studi di Napoli Federico IINapoliItaly

Personalised recommendations