Face Recognition in Uncontrolled Conditions Using Sparse Representation and Local Features

  • Alessandro Adamo
  • Giuliano Grossi
  • Raffaella Lanzarotti
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8157)

Abstract

Face recognition in presence of either occlusions, illumination changes or large expression variations is still an open problem. This paper addresses this issue presenting a new local-based face recognition system that combines weak classifiers yielding a strong one. The method relies on sparse approximation using dictionaries built on a pool of local features extracted from automatically cropped images. Experiments on the AR database show the effectiveness of our method, which outperforms current state-of-the art techniques.

Keywords

Sparse representation face recognition face partial occlusions expression variations illumination variations local features 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adamo, A., Grossi, G.: A fixed-point iterative schema for error minimization in k-sparse decomposition. In: Proceedings of the 2011 IEEE International Symposium on Signal Processing and Information Technology, ISSPIT 2011, pp. 167–172. IEEE Computer Society (2011)Google Scholar
  2. 2.
    Adamo, A., Grossi, G., Lanzarotti, R.: Sparse representation based classification for face recognition by k-liMapS algorithm. In: Elmoataz, A., Mammass, D., Lezoray, O., Nouboud, F., Aboutajdine, D. (eds.) ICISP 2012. LNCS, vol. 7340, pp. 245–252. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  3. 3.
    Ahonen, T., Hadid, A., Pietikainen, M.: Face recognition with local binary patterns. Proc. Eur. Conf. Comput. Vis., 469–481 (2004)Google Scholar
  4. 4.
    Campadelli, P., Lanzarotti, R., Lipori, G.: Precise eye and mouth localization. International Journal of Pattern Recognition and Artificial Intelligence 23(3) (2009)Google Scholar
  5. 5.
    Chan, C.H., Kittler, J., Messer, K.: Multi-scale local binary pattern histograms for face recognition. In: Lee, S.-W., Li, S.Z. (eds.) ICB 2007. LNCS, vol. 4642, pp. 809–818. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Liu, F., Wang, Z., Wang, L., Meng, X.: Facial expression recognition using hlac features and wpca. In: Tao, J., Tan, T., Picard, R.W. (eds.) ACII 2005. LNCS, vol. 3784, pp. 88–94. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Martínez, A., Benavente, R.: The ar face database. Tech. Rep. 24, Computer Vision Center, Bellatera (June 1998), http://www.cat.uab.cat/Public/Publications/1998/MaB1998
  8. 8.
    Martinez, A.M.: Recognizing imprecisely localized, partially occluded, and expression variant faces from a single sample per class. IEEE Trans. Pattern Analysis and Machine Intelligence 24(6), 748–763 (2002)CrossRefGoogle Scholar
  9. 9.
    Naseem, I., Togneri, R., Bennamoun, M.: Linear regression for face recognition. IEEE Transactions on Pattern Analysis and Machiner Intelligence 32(11), 2106–2112 (2010)CrossRefGoogle Scholar
  10. 10.
    Rabia, J., Hamid, R.A.: A survey of face recognition techniques. Journal of Information Processing Systems 5 (2009)Google Scholar
  11. 11.
    Schwartz, W.R., Guo, H., Choi, J., Davis, L.S.: Face identification using large feature sets. IEEE Transactions on Image Processing 21, 2245–2255 (2012)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Tan, X., Chen, S., Zhou, Z., Liu, J.: Face recognition under occlusions and variant expressions with partial similarity. IEEE Transactions on Information Forensics and Security 4(2), 217–230 (2009)CrossRefGoogle Scholar
  13. 13.
    Tolba, A., El-Baz, A., El-Harby, A.: Face recognition: A literature review. Int. J. Signal Process. 2, 88–103Google Scholar
  14. 14.
    Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition, vol. 1, pp. 511–518 (2001)Google Scholar
  15. 15.
    Wiskott, L., Fellous, J.M., Krüger, N., Malsburg, C.V.D.: Face recognition by elastic bunch graph matching. IEEE Transactions on Pattern Analysis and Machine Intelligence 19, 775–779 (1997)CrossRefGoogle Scholar
  16. 16.
    Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 210–227 (2009)CrossRefGoogle Scholar
  17. 17.
    Zhao, W., Chellappa, R., Phillips, P.J., Rosenfeld, A.: Face recognition: A literature survey. ACM Computing Surveys 35(4), 399–458 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Alessandro Adamo
    • 1
  • Giuliano Grossi
    • 2
  • Raffaella Lanzarotti
    • 2
  1. 1.Dipartimento di MatematicaUniversità degli Studi di MilanoMilanoItaly
  2. 2.Dipartimento di InformaticaUniversità degli Studi di MilanoMilanoItaly

Personalised recommendations