Adverse Driving Conditions Alert: Investigations on the SWIR Bandwidth for Road Status Monitoring

  • Massimo Bertozzi
  • Rean Isabella Fedriga
  • Carlo D’Ambrosio
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8156)

Abstract

The 2WIDE_SENSE (WIDE spectral band & WIDE dynamics multifunctional imaging SENSor Enabling safer car transportation) EU funded project is aimed at the development of a low-cost camera sensor for automotive applications able to acquire the full visible to Short Wave InfraRed (SWIR) spectrum, from 400 to 1700 nm.

This paper presents the results obtained using this extended spectral responsivity sensor for a Road Status Monitoring application to inspect the vehicle’s frontal area and detect layers of ice or water on the road surface.

Keywords

SWIR road status monitoring large bandwidth cameras icy road wet road 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bertozzi, M., Fedriga, R.I., Miron, A., Reverchon, J.-L.: Pedestrian Detection in Poor Visibility Conditions: Would SWIR Help? In: Procs. of the IAPR Intl. Conf. on Image Analysis and Processing, Naples, Italy (September 2013)Google Scholar
  2. 2.
    Bian, M., Li, K., Jin, D., Lian, X.: Road Condition Estimation for Automotive Anti-Skid Control System Based on BP Neural Network. In: Procs. of the IEEE Conf. on Mechatronics & Automation, pp. 1017–1022. IEEE Computer Society, Niagara Falls (July 2005)Google Scholar
  3. 3.
    Casselgren, J., Jokela, M., Kutila, M.: Slippery road detection by using different methods of polarised light. In: Meyer, G. (ed.) Advanced Microsystems for Automotive Applications 2012, vol. 113, pp. 207–220. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  4. 4.
    Casselgren, J., Sjödahl, M., LeBlanc, J.P.: Angular spectral response from covered asphalt. Applied Optics 46(20), 4277–4288 (2007)CrossRefGoogle Scholar
  5. 5.
    Casselgren, J., Sjödahl, M., LeBlanc, J.P.: Model–based winter road classification. International Journal of Vehicle Systems Modelling and Testing 7(3), 268–284 (2012)CrossRefGoogle Scholar
  6. 6.
    Hansen, M.P., Malchow, D.S.: Overview of SWIR detectors, cameras, and applications. In: Procs. of the SPIE. Thermosense XXX, vol. 6939 (March 2008)Google Scholar
  7. 7.
    Akama, S.I., Tabaru, T., Shin, S.: Bayes Estimation of Road Surface Using Road Noise. In: Procs. of the IEEE Conf. of Industrial Electronics Society, pp. 2923–2928. IEEE Computer Society, Busan (November 2004)Google Scholar
  8. 8.
    Jokela, M., Kutila, M., Lu, L.: Road Condition Monitoring System Based on a Stereo Camera. In: Procs. of the IEEE Conf. on Intelligent Computer Communication and Processing, pp. 423–428 (August 2009)Google Scholar
  9. 9.
    KfV, NTUA, SWOV, and TRL. SafetyNet, Annual Statistical Report 2008. Technical report, European Road Safety Observatory (2008)Google Scholar
  10. 10.
    Lin, P.P., Ye, M., Lee, K.-M.: Intelligent Observer-Based Road Surface Condition Detection and Identification. In: Procs. of the Conf. Systems, Man and Cybernetics, pp. 2465–2470. IEEE Computer Society, Cleveland (October 2008)Google Scholar
  11. 11.
    Lu, Y., Higgins-Luthman, M.J.: Black ice detection and warning system. US Patent App. 11/948, 086 (November 30, 2007)Google Scholar
  12. 12.
    Malchow, D.: NIR Trends: Machine vision in the Short Wave Infrared. In: UTC Aerospace Systems (Sensors Unlimited Products). Goodrich Corporation (March 2009)Google Scholar
  13. 13.
    Mika, M., Hiroyuki, Y., Takao, K., Takeshi, I., Mitsuo, S.: Road Surface Condition Detector Using High Peak Power Fiber Laser. Transactions of the Institute of Electrical Engineers of Japan 10(4), 1198–1204 (2000)Google Scholar
  14. 14.
    Omer, R., Fu, L.: An automatic image recognition system for winter road surface condition classification. In: Procs. of the IEEE Intelligent Transportation Systems 2010, pp. 1375–1379 (September 2010)Google Scholar
  15. 15.
    Viikari, V., Varpula, T., Kantanen, M.: Automotive Radar Technology for Detecting Road Conditions. Backscattering Properties of Dry, Wet, and Icy Asphalt. In: Procs. of the 5th European Radar Conference, pp. 276–279. IEEE Computer Society, Amsterdam (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Massimo Bertozzi
    • 1
  • Rean Isabella Fedriga
    • 1
  • Carlo D’Ambrosio
    • 2
  1. 1.Dip. Ing InformazioneParmaItaly
  2. 2.Centro Ricerche FIATOrbassanoItaly

Personalised recommendations