Hierarchical Image Representation Simplification Driven by Region Complexity

  • Petra Bosilj
  • Sébastien Lefèvre
  • Ewa Kijak
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8156)

Abstract

This article presents a technique that arranges the elements of hierarchical representations of images according to a coarseness attribute. The choice of the attribute can be made according to prior knowledge about the content of the images and the intended application. The transformation is similar to filtering a hierarchy with a non-increasing attribute, and comprises the results of multiple simple filterings with an increasing attribute. The transformed hierarchy can be used for search space reduction prior to the image analysis process because it allows for direct access to the hierarchy elements at the same scale or a narrow range of scales.

Keywords

hierarchical representation tree structures image filtering segmentation and grouping image region analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cousty, J., Najman, L.: Incremental Algorithm for Hierarchical Minimum Spanning Forests and Saliency of Watershed Cuts. In: Soille, P., Pesaresi, M., Ouzounis, G.K. (eds.) ISMM 2011. LNCS, vol. 6671, pp. 272–283. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    Gueguen, L., Soille, P.: Frequent and Dependent Connectivities. In: Soille, P., Pesaresi, M., Ouzounis, G.K. (eds.) ISMM 2011. LNCS, vol. 6671, pp. 120–131. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Jones, R.: Connected Filtering and Segmentation using Component Trees. Computer Vision and Image Understanding 75(3), 215–228 (1999)CrossRefGoogle Scholar
  4. 4.
    Monasse, P., Guichard, F.: Fast Computation of a Contrast-Invariant Image Representation. IEEE Transactions on Image Processing 9(5), 860–872 (2000)CrossRefGoogle Scholar
  5. 5.
    Najman, L.: On the Equivalence Between Hierarchical Segmentations and Ultrametric Watersheds. JMIV 40(3), 231–247 (2011)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Najman, L., Couprie, M.: Building the Component Tree in Quasi-Linear Time. IEEE Transactions on Image Processing 15(11), 3531–3539 (2006)CrossRefGoogle Scholar
  7. 7.
    Soille, P., Najman, L.: On Morphological Hierarchical Representations for Image Processing and Spatial Data Clustering. In: Köthe, U., Montanvert, A., Soille, P. (eds.) WADGMM 2010. LNCS, vol. 7346, pp. 43–67. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  8. 8.
    Ouzounis, G., Wilkinson, M.: Mask-Based Second-Generation Connectivity and Attribute Filters. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(6), 990–1004 (2007)CrossRefGoogle Scholar
  9. 9.
    Ouzounis, G.K., Soille, P.: Pattern Spectra from Partition Pyramids and Hierarchies. In: Soille, P., Pesaresi, M., Ouzounis, G.K. (eds.) ISMM 2011. LNCS, vol. 6671, pp. 108–119. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Salembier, P., Garrido, L.: Binary Partition Tree as an Efficient Representation for Image Processing, Segmentation, and Information Retrieval. IEEE Transactions on Image Processing 9(4), 561–576 (2000)CrossRefGoogle Scholar
  11. 11.
    Salembier, P., Oliveras, A., Garrido, L.: Antiextensive Connected Operators for Image and Sequence Processing. IEEE Transactions on Image Processing 7(4), 555–570 (1998)CrossRefGoogle Scholar
  12. 12.
    Salembier, P., Wilkinson, M.H.F.: Connected Operators. IEEE Signal Processing Magazine 26(6), 136–157 (2009)CrossRefGoogle Scholar
  13. 13.
    Serra, J.C., Salembier, P.: Connected operators and pyramids. In: Dougherty, E.R., Gader, P.D., Serra, J.C. (eds.) Image Algebra and Morphological Image Processing IV. SPIE, vol. 2030, pp. 65–76. SPIE Press, San Diego (1993)CrossRefGoogle Scholar
  14. 14.
    Soille, P.: Morphological Image Analysis: Principles and Applications, 2nd edn. Springer, New York (2003)Google Scholar
  15. 15.
    Soille, P.: On Genuine Connectivity Relations Based on Logical Predicates. In: Proc. of the 14th Int. Conf. on Image Analysis and Processing, pp. 487–492. IEEE Computer Society Press, Los Alamitos (2007)Google Scholar
  16. 16.
    Soille, P.: Constrained Connectivity for Hierarchical Image Partitioning and Simplification. IEEE Transactions on Pattern Analysis and Machine Intelligence 30(7), 1132–1145 (2008)CrossRefGoogle Scholar
  17. 17.
    Soille, P.: Preventing Chaining Through Transitions While Favouring It within Homogeneous Regions. In: Soille, P., Pesaresi, M., Ouzounis, G.K. (eds.) ISMM 2011. LNCS, vol. 6671, pp. 96–107. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  18. 18.
    Soille, P., Grazzini, J.: Constrained Connectivity and Transition Regions. In: Wilkinson, M.H.F., Roerdink, J.B.T.M. (eds.) ISMM 2009. LNCS, vol. 5720, pp. 59–69. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  19. 19.
    Song, Y.: A Topdown Algorithm for Computation of Level Line Trees. IEEE Transactions on Image Processing 16(8), 2107–2116 (2007)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Song, Y., Zhang, A.: Locating Image Background by Monotonic Tree. In: Caulfield, H., Chen, S.H., Cheng, H.D., Duro, R., Honovar, V., Kerre, E.E., Lu, M., Romay, M., Shih, T., Ventura, D., Wang, P., Yang, Y. (eds.) 6th Joint Conf. on Information Sciences, pp. 879–884. Association for Intelligent Machinery, Inc., Durham (2002)Google Scholar
  21. 21.
    Song, Y., Zhang, A.: Analyzing scenery images by monotonic tree. ACM Multimedia Systems J. 8(6), 495–511 (2003)CrossRefGoogle Scholar
  22. 22.
    Vilaplana, V., Marques, F., Salembier, P.: Binary Partition Trees for Object Detection. IEEE Transactions on Image Processing 17(11), 2201–2216 (2008)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Petra Bosilj
    • 1
  • Sébastien Lefèvre
    • 1
  • Ewa Kijak
    • 2
  1. 1.UMR 6074, IRISAUniv. Bretagne-SudVannesFrance
  2. 2.UMR 6074, IRISAUniv. Rennes IRennesFrance

Personalised recommendations