Problems in Distortion Corrected Texture Classification and the Impact of Scale and Interpolation

  • Michael Gadermayr
  • Michael Liedlgruber
  • Andreas Uhl
  • Andreas Vécsei
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8156)


In the field of computer aided celiac disease diagnosis, wide-angle endoscopy lenses are employed which introduce significant barrel type distortions. Although the images can be rectified using distortion correction methods, computer based diagnosis suffers from missing information in highly distorted image regions. First, we investigate the impact of simple and advanced interpolation techniques on the classification rates. Furthermore we explore the effect of considering different image resolutions. Whereas in previous studies distortion correction in most cases turned out to be disadvantageous, we show that for certain setups distortion correction definitely is advantageous.


Distortion correction endoscopy classification celiac disease 


  1. 1.
    Duchon, C.E.: Lanczos filtering in one and two dimensions. J. Appl. Meteor. 18(8), 1016–1022 (1979)CrossRefGoogle Scholar
  2. 2.
    Fasano, A., et al.: Prevalence of celiac disease in at-risk and not-at-risk groups in the united states: A large multicenter study. Archives of Internal Medicine 163(3), 286–292 (2003)CrossRefGoogle Scholar
  3. 3.
    Fitzgibbon, A.W.: Simultaneous linear estimation of multiple view geometry and lens distortion. In: CVPR, pp. 125–132 (2001)Google Scholar
  4. 4.
    Gschwandtner, M., Hämmerle-Uhl, J., Höller, Y., Liedlgruber, M., Uhl, A., Vécsei, A.: Improved endoscope distortion correction does not necessarily enhance mucosa-classification based medical decision support systems. In: Proc. of the Intern. Workshop on Multimedia Signal Processing (MMSP 2012), pp. 158–163 (September 2012)Google Scholar
  5. 5.
    Gschwandtner, M., Liedlgruber, M., Uhl, A., Vécsei, A.: Experimental study on the impact of endoscope distortion correction on computer-assisted celiac disease diagnosis. In: Proc. of the 10th Intern. Conf. on Information Technology and Applications in Biomedicine (ITAB 2010) (November 2010)Google Scholar
  6. 6.
    Haralick, R.M., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Trans. on Systems, Man, and Cybernetics 3, 610–621 (1973)CrossRefGoogle Scholar
  7. 7.
    Hegenbart, S., Kwitt, R., Liedlgruber, M., Uhl, A., Vécsei, A.: Impact of duodenal image capturing techniques and duodenal regions on the performance of automated diagnosis of celiac disease. In: Proc. of the 6th Intern. Symp. on Image and Signal Proc. and Analysis (ISPA 2009), pp. 718–723 (September 2009)Google Scholar
  8. 8.
    Liao, S., Zhu, X., Lei, Z., Zhang, L., Li, S.Z.: Learning multi-scale block local binary patterns for face recognition. In: Lee, S.-W., Li, S.Z. (eds.) ICB 2007. LNCS, vol. 4642, pp. 828–837. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Liedlgruber, M., Uhl, A., Vécsei, A.: Statistical analysis of the impact of distortion (correction) on an automated classification of celiac disease. In: Proc. of the 17th Intern. Conf. on Digital Signal Processing (DSP 2011), Corfu, Greece (July 2011)Google Scholar
  10. 10.
    Melo, R., Barreto, J.P., Falcao, G.: A new solution for camera calibration and real-time image distortion correction in medical endoscopy-initial technical evaluation. IEEE Trans. Biomed. Eng. 59(3), 634–644 (2012)CrossRefGoogle Scholar
  11. 11.
    Oberhuber, G., Granditsch, G., Vogelsang, H.: The histopathology of celiac disease: time for a standardized report scheme for pathologists. European Journal of Gastroenterology and Hepatology 11, 1185–1194 (1999)CrossRefGoogle Scholar
  12. 12.
    Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of texture measures with classification based on feature distributions. Pattern Recognition 29(1), 51–59 (1996)CrossRefGoogle Scholar
  13. 13.
    Rautkorpi, R., Iivarinen, J.: A novel shape feature for image classification and retrieval. In: Proc. of the International Conference on Image Analysis and Recognition (ICIAR), pp. 753–760 (2004)Google Scholar
  14. 14.
    Tan, X., Triggs, B.: Enhanced local texture feature sets for face recognition under difficult lighting conditions. In: Zhou, S.K., Zhao, W., Tang, X., Gong, S. (eds.) AMFG 2007. LNCS, vol. 4778, pp. 168–182. Springer, Heidelberg (2007)Google Scholar
  15. 15.
    Wang, F., Xu, Y., Zhao, Y., Hu, F.: A new nonlinear interpolation algorithm for edge preserving. In: 2010 International Conference on Multimedia Technology (ICMT), pp. 1–4 (October 2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Michael Gadermayr
    • 1
  • Michael Liedlgruber
    • 1
  • Andreas Uhl
    • 1
  • Andreas Vécsei
    • 2
  1. 1.Department of Computer SciencesUniversity of SalzburgAustria
  2. 2.St. Anna Children’s Hospital, Endoscopy UnitViennaAustria

Personalised recommendations