Measuring Sandy Bottom Dynamics by Exploiting Depth from Stereo Video Sequences

  • Rosaria E. Musumeci
  • Giovanni M. Farinella
  • Enrico Foti
  • Sebastiano Battiato
  • Thor U. Petersen
  • B. Mutlu Sumer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8156)

Abstract

In this paper an imaging system for measuring sandy bottom dynamics is proposed. The system exploits stereo sequences and projected laser beams to build the 3D shape of the sandy bottom during time. The reconstruction is used by experts of the field to perform accurate measurements and analysis in the study of the final equilibrium conditions of sea bottoms in the presence of water flows. Results obtained by processing data acquired in hydraulic laboratory confirm the effectiveness of the system which makes simple and fast the understanding of the sandy bottom dynamics and the related equilibrium phenomena.

Keywords

Sandy bottom dynamics Stereo system 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sumer, B.M., Fredsøe, J.: The mechanics of scour in the marine environement. World Scientific (2002)Google Scholar
  2. 2.
    Sánchez-Arcilla, A., Cáceres, I., van Rijn, L., Grüne, J.: Revisiting mobile bed tests for beach profile dynamics. Coastal Eng. 58(7), 583–593 (2011)CrossRefGoogle Scholar
  3. 3.
    Sumer, B.M., Hatipoglu, F., Fredsöe, J.: Wave scour around a pile in sand, medium dense and dense silt. J. Waterway, Port, Coastal, Ocean Eng. 133(1), 14–27 (2007)CrossRefGoogle Scholar
  4. 4.
    Astruc, D., Cazin, S., Cid, E., Eiff, O., Lacaze, L., Robin, P., Toublanc, F.: Cáceres: A stereoscopic method for rapid monitoring of the spatio-temporal evolution of the sand-bed elevation in the wash zone. Coastal Eng. 60(1), 11–20 (2012)CrossRefGoogle Scholar
  5. 5.
    Baglio, S., Faraci, C., Foti, E., Musumeci, R.: Measurements of the 3-D scour process around a pile in an oscillating flow through a stereo vision approach. Measurement 30(2), 145–160 (2001)CrossRefGoogle Scholar
  6. 6.
    Foti, E., Cáceres-Rabionet, I., Marini, A., Musumeci, R.E., Sánchez-Arcilla, A.: Experimental investigations of the bed evolution in wave flumes: Perrformances of 2D and 3D optical systems. Coastal Eng. 58(7), 606–622 (2011)CrossRefGoogle Scholar
  7. 7.
    Sumer, B.M., Petersen, T.U., Locatelli, L., Fredsöe, J., Musumeci, R.E., Foti, E.: Backfilling of a scour hole around a pile in waves and current. J. Waterway, Port, Coastal, Ocean Eng. 139(1), 9–23 (2013)CrossRefGoogle Scholar
  8. 8.
    Lowe, D.G.: Distinctive image features from scale-invariant key-points. International Journal of Computer Vision 60(2), 91–110 (2004)CrossRefGoogle Scholar
  9. 9.
    Abdel-Aziz, Y.I., Karara, H.M.: Direct linear transformation into object space coordinates in close-range photogrammetry. In: Proc. Symposium in Close-Range Photogrammetry, Urbana, Illinois, pp. 1–18 (1971)Google Scholar
  10. 10.
    Faugeras, O.D., Toscani, G.: Camera calibration for 3D computer vision. In: Proc. International Workshop on Industrial Applications of Machine Vision and Machine Intelligence, Silken, Japan, pp. 240–247 (1987)Google Scholar
  11. 11.
    Heikkilä, J., Silvé, O.: A four-step camera calibration procedure with implicit image correction. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Juan, Puerto Rico, pp. 1106–1112 (1997)Google Scholar
  12. 12.
    Tsai, R.Y.: A versatile camera calibration technique for hygh-accuracy 3D machine vision metrology using off-the shelf TV cameras and lenses. IEEE J. Robotics and Automation RA-3(4), 323–344 (1987)CrossRefGoogle Scholar
  13. 13.
    Allan, G.H., Serra, J.: Morphological operators on the unit circle. IEEE Transactions on Image Processing 10(12), 1842–1850 (2001)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Soille, P.: Morphological image analysis: Principle and Applications. Springer (1999)Google Scholar
  15. 15.
    Hartley, R., Zisserman, R.: Multiple view geometry in computer vision. Cambridge University Press (2003)Google Scholar
  16. 16.
    Newcombe, R.A., Izadi, S., Hilliges, O., Molyneaux, D., Kim, D., Davison, A.J., Kohli, P., Shotton, J., Hodges, S., Fitzgibbon, A.: KinectFusion: Real-Time Dense Surface Mapping and Tracking. In: IEEE International Symposium on Mixed and Augmented Reality (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Rosaria E. Musumeci
    • 1
  • Giovanni M. Farinella
    • 2
  • Enrico Foti
    • 1
  • Sebastiano Battiato
    • 2
  • Thor U. Petersen
    • 3
  • B. Mutlu Sumer
    • 3
  1. 1.Dept. of Civil and Environmental EngineeringUniversity of CataniaItaly
  2. 2.Dept. of Mathematics and Computer ScienceUniversity of CataniaItaly
  3. 3.DTU Mekanik, Section for Fluid Mechanics, Coastal and Maritime EngineeringTechnical University of DenmarkDenmark

Personalised recommendations