Road Traffic Conflict Analysis from Geo-referenced Stereo Sequences

  • Sebastiano Battiato
  • Stefano Cafiso
  • Alessandro Di Graziano
  • Giovanni M. Farinella
  • Oliver Giudice
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8156)

Abstract

In this paper an imaging system for road traffic conflict analysis is proposed. The system exploits geo-referenced stereo sequences and tracking procedure to compute traffic conflict measures which can be analysed by experts. Using the potentiality of the traffic conflict technique as a surrogate safety measure could constitute an effective tool in understanding how the driver interacts and adapts its behaviour with respect to the vehicle, the road characteristics, the traffic control devices and environment. Experiments performed on real data acquired in urban environment confirm the effectiveness of the system which makes simple and fast for the experts the understanding of the driver behaviour.

Keywords

Traffic conflict analysis Stereo system Tracking 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chin, H.C., Quek, S.T.: Measurement of Traffic Conflicts. Safety Science 26(3), 169–187 (1997)CrossRefGoogle Scholar
  2. 2.
    Migletz, D.J., Glauz, W.D., Bauer, K.M.: Relationships between Traffic Conflicts and Accidents. Report No: FHWA/RD-84/042. US Department of Transportation, Federal Highway Administration (1985)Google Scholar
  3. 3.
    Heinrich, H.W.: Industrial Accident Prevention. McGraw-Hill, New York (1932)Google Scholar
  4. 4.
    Hyden, C.: The Development of Method for Traffic Safety Evaluation: The Swedish Traffic Conflict Technique. Bulletin 70. Lund Ins. of Technology, Sweden (1987)Google Scholar
  5. 5.
    Songchitruksa, P., Tarko, A.P.: Extreme value theory approach to safety estimation. Accident Analysis & Prevention 38, 811–822 (2006)CrossRefGoogle Scholar
  6. 6.
    Cafiso, S., Garcia, A.G., Cavarra, R., Romero Rojas, M.A.: Crosswalk safety evaluation using a pedestrian risk index as traffic conflict measure. In: The 3rd International Conference on Road safety and Simulation (2011)Google Scholar
  7. 7.
    Woodfill, J.I., Gordon, G., Buck, R.: Tyzx DeepSea High Speed Stereo Vision System. In: IEEE Workshop on Real Time 3-D Sensors and their Use, IEEE Conference on Computer Vision and Pattern Recognition (2004)Google Scholar
  8. 8.
    Zabih, R., Woodfill, R.: Non-parametric Local Transforms for Computing Visual Correspondence. In: Eklundh, J.-O. (ed.) ECCV 1994. LNCS, vol. 801, Springer, Heidelberg (1994)Google Scholar
  9. 9.
    Comaniciu, D., Ramesh, V., Meer, P.: Kernel-Based Object Tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(5) (2003)Google Scholar
  10. 10.
    Kalal, Z., Mikolajczyk, K., Matas, J.: Face-TLD: Tracking-Learning-Detection applied to faces. In: IEEE International Conference on Image Processing (2010)Google Scholar
  11. 11.
    Cafiso, S., Di Graziano, A.: Automated in-vehicle data collection and treatment for existing roadway alignment. In: Efficient Transportation and Pavement Systems: Characterization, Mechanisms, Simulation, and Modeling - International Gulf Conference on Roads, pp. 785–797 (2008)Google Scholar
  12. 12.
    Battiato, S., Curti, S., La Cascia, M., Scordato, E., Tortora, M.: Depth Map Generation by Image Classification. SPIE Electronic Imaging (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sebastiano Battiato
    • 1
  • Stefano Cafiso
    • 2
  • Alessandro Di Graziano
    • 2
  • Giovanni M. Farinella
    • 1
  • Oliver Giudice
    • 1
  1. 1.Image Processing Laboratory, Dipartimento di Matematica e InformaticaUniversity of CataniaItaly
  2. 2.Dipartimento di Ingegneria Civile e AmbientaleUniversity of CataniaItaly

Personalised recommendations