Visual Analytics in Environmental Research: A Survey on Challenges, Methods and Available Tools

  • Martin Komenda
  • Daniel Schwarz
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 413)


Visual analytics approaches bring an innovative and effective way how to deliver the knowledge from a particular domain to an individual user. With the use of visual analytics methods we can easily discover the unexpected relations and interesting patterns, which are hidden in the huge data warehouses. It builds on the human mind’s ability to understand the complex visualization of information. In this paper we introduce the potential usefulness of visual analytics for researchers working in the field of environmental informatics. Current challenges beyond the survey are described here, including the summary of particular well-proven tools and scenarios, which can be applied in many various fields of environmental research.


Visual analytics learning analytics human cognition environmental data visualization 


  1. 1.
    Fisher, B., Green, T.M., Arias-Hernández, R.: Visual Analytics as a Translational Cognitive Science. Top. Cogn. Sci. 3, 609–625 (2011)CrossRefGoogle Scholar
  2. 2.
    Chabot, C.: Demystifying Visual Analytics. Comput. Graph. Appl. Ieee. 29, 84–87 (2009)CrossRefGoogle Scholar
  3. 3.
    Andrienko, N., Andrienko, G.: Visual analytics of movement: An overview of methods, tools and procedures. Inf. Vis. 12, 3–24 (2013)CrossRefGoogle Scholar
  4. 4.
    Saraiya, P., North, C., Lam, V., Duca, K.A.: An Insight-Based Longitudinal Study of Visual Analytics. Ieee Trans. Vis. Comput. Graph. 12, 1511–1522 (2006)CrossRefGoogle Scholar
  5. 5.
    Romero, C., Ventura, S.: Educational data mining: A survey from 1995 to 2005. Expert Syst. Appl. 33, 135–146 (2007)CrossRefGoogle Scholar
  6. 6.
    Siemens, G.: What are learning analytics (2010)Google Scholar
  7. 7.
    Duval, E.: Attention please!: learning analytics for visualization and recommendation. In: Proceedings of the 1st International Conference on Learning Analytics and Knowledge, pp. 9–17 (2011)Google Scholar
  8. 8.
    Banff, A.: 1st International Conference on Learning Analytics and Knowledge (2011),
  9. 9.
    Dyckhoff, A.L., Zielke, D., Bültmann, M., Chatti, M.A., Schroeder, U.: Design and implementation of a learning analytics toolkit for teachers. J. Educ. Technol. Soc. 15, 58–76 (2012)Google Scholar
  10. 10.
    Bienkowski, M., Feng, M., Means, B.: Enhancing Teaching and Learning Through Educational Data Mining and Learning Analytics: An Issue Brief (2012),
  11. 11.
    Ferguson, R.: Learning analytics: drivers, developments and challenges. Int. J. Technol. Enhanc. Learn. 4, 304–317 (2012)CrossRefGoogle Scholar
  12. 12.
    Norris, D.M.: 7 Things You Should Know About First-Generation Learning Analytics. Educ. Learn. Initiat. Eli (2011)Google Scholar
  13. 13.
    Greller, W., Drachsler, H.: Translating Learning into Numbers: A Generic Framework for Learning Analytics. Educ. Technol. Soc. 15, 42–57 (2012)Google Scholar
  14. 14.
    Wong, W., Liu, W., Bennamoun, M.: Ontology Learning from Text: A Look Back and into the Future. Acm Comput. Surv. 44 (2012)Google Scholar
  15. 15.
    Green, T.M., Ribarsky, W.: Using a human cognition model in the creation of collaborative knowledge visualizations. SPIE Defense and Security Symposium. p. 69830C–69830C (2008).Google Scholar
  16. 16.
    Green, T.M., Ribarsky, W., Fisher, B.: Visual analytics for complex concepts using a human cognition model. In: IEEE Symposium on Visual Analytics Science and Technology, VAST 2008, pp. 91–98 (2008)Google Scholar
  17. 17.
    Burkhardt, D., Nazemi, K.: Dynamic process support based on users’ behavior. In: 15th Int. Conf.on Interact. Collab. Learn., ICL 2012, pp. 1–6 (2012)Google Scholar
  18. 18.
    Savikhin, A., Maciejewski, R., Ebert, D.S.: Applied visual analytics for economic decision-making. In: Ieee Symp. Vis. Anal. Sci. Technol., Vast 2008, pp. 107–114 (2008)Google Scholar
  19. 19.
    Simon, H.A.: The sciences of the artificial. MIT press (1996)Google Scholar
  20. 20.
    Verbert, K., Manouselis, N., Ochoa, X., Wolpers, M., Drachsler, H., Bosnic, I., Duval, E.: Context-Aware Recommender Systems for Learning: A Survey and Future Challenges. IEEE Trans. on Learn. Technol. 5, 318–335 (2012)CrossRefGoogle Scholar
  21. 21.
    Nazemi, K., Kohlhammer, J.: Visual Variables in Adaptive Visualizations (2013)Google Scholar
  22. 22.
    Kasik, D.J., Ebert, D., Lebanon, G., Park, H., Pottenger, W.M.: Data transformations and representations for computation and visualization. Inf. Vis. 8, 275–285 (2009)CrossRefGoogle Scholar
  23. 23.
    Risch, J.S., Rex, D.B., Dowson, S.T., Walters, T.B., May, R.A., Moon, B.D.: The STARLIGHT information visualization system. In: Proceedings of IEEE Conference on Information Visualization, pp. 42–49 (1997)Google Scholar
  24. 24.
    Meyer, J., Bethel, E.W., Horsman, J.L., Hubbard, S.S., Krishnan, H., Romosan, A., Keating, E.H., Monroe, L., Strelitz, R., Moore, P., Taylor, G., Torkian, B., Johnson, T.C., Gorton, I.: Visual Data Analysis as an Integral Part of Environmental Management. IEEE Trans. Vis. Comput. Graph. 18, 2088–2094 (2012)CrossRefGoogle Scholar
  25. 25.
    Thomas, J.J., Cook, K.A.: Illuminating the path: The research and development agenda for visual analytics. IEEE Comput. Soc. (2005)Google Scholar
  26. 26.
    Hůlek, R., Jarkovský, J., Borůvková, J.: Global Monitoring Plan of the Stockholm Convention on Persistent Organic Pollutants: visualization and on-line analysis of data from the monitoring reports (2013)Google Scholar
  27. 27.
    Sips, M., Kothur, P., Unger, A., Hege, H.-C., Dransch, D.: A Visual Analytics Approach to Multiscale Exploration of Environmental Time Series. Vis. Comput. Graph. Ieee Trans. 18, 2899–2907 (2012)CrossRefGoogle Scholar
  28. 28.
    Sun, A.: Enabling collaborative decision-making in watershed management using cloud-computing services. Environ. Model. Softw. 41, 93–97 (2013)CrossRefGoogle Scholar
  29. 29.
    Boulos, M.K., Viangteeravat, T., Anyanwu, M.N., Nagisetty, V.R., Kuscu, E.: Web GIS in practice IX: a demonstration of geospatial visual analytics using Microsoft Live Labs Pivot technology and WHO mortality data. Int. J. Heal. Geogr. 10, 19 (2011)CrossRefGoogle Scholar
  30. 30.
    Scheepens, R., Willems, N., van de Wetering, H., Andrienko, G., Andrienko, N., van Wijk, J.J.: Composite density maps for multivariate trajectories. Vis. Comput. Graph. IEEE Trans. 17, 2518–2527 (2011)CrossRefGoogle Scholar
  31. 31.
    Willems, N., Van De Wetering, H., Van Wijk, J.J.: Visualization of vessel movements. Computer Graphics Forum, pp. 959–966 (2009)Google Scholar
  32. 32.
    Rinzivillo, S., Pedreschi, D., Nanni, M., Giannotti, F., Andrienko, N., Andrienko, G.: Visually driven analysis of movement data by progressive clustering. Inf. Vis. 7, 225–239 (2008)CrossRefGoogle Scholar
  33. 33.
    Spretke, D., Bak, P., Janetzko, H., Kranstauber, B., Mansmann, F., Davidson, S.: Exploration through enrichment: a visual analytics approach for animal movement. In: Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 421–424 (2011)Google Scholar
  34. 34.
    Vrotsou, K., Andrienko, N., Andrienko, G., Jankowski, P.: Exploring city structure from georeferenced photos using graph centrality measures. In: Gunopulos, D., Hofmann, T., Malerba, D., Vazirgiannis, M. (eds.) ECML PKDD 2011, Part III. LNCS, vol. 6913, pp. 654–657. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  35. 35.
    Lundblad, P., Eurenius, O., Heldring, T.: Interactive visualization of weather and ship data. In: 13th International Conference on Information Visualisation, pp. 379–386 (2009)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2013

Authors and Affiliations

  • Martin Komenda
    • 1
  • Daniel Schwarz
    • 1
  1. 1.Institute of Biostatistics and AnalysesMasaryk UniversityBrnoCzech Republic

Personalised recommendations