NEVE: A Neuro-Evolutionary Ensemble for Adaptive Learning

  • Tatiana Escovedo
  • André Vargas Abs da Cruz
  • Marley Vellasco
  • Adriano Soares Koshiyama
Conference paper
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 412)


This work describes the use of a quantum-inspired evolutionary algorithm (QIEA-R) to construct a weighted ensemble of neural network classifiers for adaptive learning in concept drift problems. The proposed algorithm, named NEVE (meaning Neuro-EVolutionary Ensemble), uses the QIEA-R to train the neural networks and also to determine the best weights for each classifier belonging to the ensemble when a new block of data arrives. After running eight simulations using two different datasets and performing two different analysis of the results, we show that NEVE is able to learn the data set and to quickly respond to any drifts on the underlying data, indicating that our model can be a good alternative to address concept drift problems. We also compare the results reached by our model with an existing algorithm, Learn++.NSE, in two different nonstationary scenarios.


adaptive learning concept drift neuro-evolutionary ensemble quantum-inspired evolution 


  1. 1.
    Schlimmer, J.C., Granger, R.H.: Incremental learning from noisy data. Machine Learning 1(3), 317–354 (1986)Google Scholar
  2. 2.
    Elwell, R., Polikar, R.: Incremental Learning of Concept drift in Nonstationary Environments. IEEE Transactions on Neural Networks 22(10), 1517–1531 (2011)CrossRefGoogle Scholar
  3. 3.
    Kuncheva, L.I.: Classifier ensembles for changing environments. In: Roli, F., Kittler, J., Windeatt, T. (eds.) MCS 2004. LNCS, vol. 3077, pp. 1–15. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Kuncheva, L.I.: Classifier ensemble for detecting concept change in streaming data: Overview and perspectives. In: Proc. Eur. Conf. Artif. Intell., pp. 5–10 (2008)Google Scholar
  5. 5.
    Ahiskali, M.T.M., Muhlbaier, M., Polikar, R.: Learning concept drift in non-stationary environments using an ensemble of classifiers based approach. IJCNN, 3455–3462 (2008)Google Scholar
  6. 6.
    Oza, N.C.: Online Ensemble Learning. Dissertation, University of California, Berkeley (2001)Google Scholar
  7. 7.
    Abs da Cruz, A.V., Vellasco, M.M.B.R., Pacheco, M.A.C.: Quantum-inspired evo-lutionary algorithms for numerical optimization problems. In: Proceedings of the IEEE World Conference in Computational Intelligence (2006)Google Scholar
  8. 8.
    Abs da Cruz, A.V.: Algoritmos evolutivos com inspiração quântica para otimização de problemas com representação numérica. Ph.D. dissertation, Pontifical Catholic University – Rio de Janeiro (2007)Google Scholar
  9. 9.
    Han, K.-H., Kim, J.-H.: Quantum-inspired evolutionary algorithm for a class of combinatorial optimization. IEEE Trans. Evolutionary Computation 6(6), 580–593 (2002)CrossRefGoogle Scholar
  10. 10.
    Han, K.-H., Kim, J.-H.: On setting the parameters of QEA for practical applications: Some guidelines based on empirical evidence. In: Cantú-Paz, E., et al. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 427–428. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Han, K.-H., Kim, J.-H.: Quantum-inspired evolutionary algorithms with a new termination criterion, He gate, and two-phase scheme. IEEE Trans. Evolutionary Computation 8(2), 156–169 (2004)CrossRefGoogle Scholar
  12. 12.
    Street, W.N., Kim, Y.: A streaming ensemble algorithm (SEA) for large-scale classification. In: Proc. 7th ACM SIGKDD Int. Conf. Knowl. Disc. Data Min., pp. 377–382 (2001)Google Scholar
  13. 13.
    Polikar, R., Elwell, R.: Benchmark Datasets for Evaluating Concept drift/NSE Algorithms, (last access at December 2012)
  14. 14.
    Montgomery, D.C.: Design and analysis of experiments. Wiley (2008)Google Scholar
  15. 15.
    R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria (2012), Donwload at:
  16. 16.
    Royston, P.: An extension of Shapiro and Wilk’s W test for normality to large samples. Applied Statistics 31, 115–124 (1982)CrossRefzbMATHGoogle Scholar
  17. 17.
    Kolter, J., Maloof, M.: Dynamic weighted majority: An ensemble method for drifting concepts. Journal of Machine Learning Research 8, 2755–2790 (2007)zbMATHGoogle Scholar
  18. 18.
    Jackowski, K.: Fixed-size ensemble classifier system evolutionarily adapted to a recurring context with an unlimited pool of classifiers. Pattern Analysis and Applications (2013)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2013

Authors and Affiliations

  • Tatiana Escovedo
    • 1
  • André Vargas Abs da Cruz
    • 1
  • Marley Vellasco
    • 1
  • Adriano Soares Koshiyama
    • 1
  1. 1.Electrical Engineering DepartmentPontifical Catholic University of Rio de Janeiro (PUC-Rio)Rio de JaneiroBrazil

Personalised recommendations