Advertisement

Intelligent Systems Applied to the Control of an Industrial Mixer

  • Marcio Mendonça
  • Douglas Matsumoto
  • Lucia V. R. Arruda
  • Elpinik I. Papageorgiou
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 412)

Abstract

This paper presents the application of intelligent techniques to control an industrial mixer. Control design is based on hebbian evolution of fuzzy cognitive maps. In this context, this paper develops a dynamical fuzzy cognitive map (D-FCM) based on Hebbian Learning algorithms. Two strategies to update FCM weights are derived. Finally, the D-FCM is used to control an industrial mixer. Simulation results of this control are presented. Additionally, results are provided extending some of the algorithms into the Arduino platform in order to acknowledge the performance of the codes reported in this paper.

Keywords

fuzzy cognitive maps hebbian learning Arduino platform process control fuzzy logic 

References

  1. 1.
    Passino, M.K., Yourkovich, S.: Fuzzy control. Addison-Wesley, Menlo Park (1997)Google Scholar
  2. 2.
    Kosko, B.: Fuzzy cognitive maps. International Journal Man-Machine Studies 24(1), 65–75 (1986)CrossRefzbMATHGoogle Scholar
  3. 3.
    Glykas, M.: Fuzzy Cognitive Maps: Advances in Theory, Methodologies, Tools and Applications. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Kosko, B.: Neural networks and fuzzy systems: A dynamical systems approach to machine intelligence. Prentice Hall, New York (1992)zbMATHGoogle Scholar
  5. 5.
    Dickerson, J.A., Kosko, B.: Virtual Worlds as Fuzzy cognitive maps. Presence 3(2), 173–189 (1994)Google Scholar
  6. 6.
    Lee, K.C., Lee, S.: A cognitive map simulation approach to adjusting the design factors of the electronic commerce web sites. Expert Systems with Applications 24(1), 1–11 (2003)CrossRefGoogle Scholar
  7. 7.
    Papageorgiou, E., Stylios, C., Groumpos, P.: Novel for supporting medical decision making of different data types based on Fuzzy Cognitive Map Framework. In: Proceedings of the 29th Annual International Conference of the IEEE Embs Cité Internationale, Lyon, France, pp. 23–26 (2007)Google Scholar
  8. 8.
    Papageorgiou, E., Stylios, C., Groumpos, P.A.: Combined Fuzzy cognitive map and decision trees model for medical decision making. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 1, pp. 6117–6120. IEEE Engineering in Medicine and Biology Society (2006)Google Scholar
  9. 9.
    Huang, Y.C., Wang, X.Z.: Application of Fuzzy causal networks to waste water treatment plants. Chemical Engineering Science 24(13/14), 2731–2738 (1999)CrossRefGoogle Scholar
  10. 10.
    Mendonça, M., Angélico, B., Arruda, L.V.R., Neves, F.: A dynamic fuzzy cognitive map applied to chemical process supervision. Engineering Applications of Artificial Intelligence 26, 1199–1210 (2013)CrossRefGoogle Scholar
  11. 11.
    Miao, Y., Liu, Z.Q., Siew, C.K., Miao, C.Y.: Transformation of cognitive maps. IEEE Transactions on Fuzzy Systems 18(1), 114–124 (2010)CrossRefGoogle Scholar
  12. 12.
    Papageorgiou, E.: Learning Algorithms for Fuzzy Cognitive Maps. IEEE Transactions on Systems and Cybernetics. Part C: Applications and Reviews 42, 150–163 (2012)CrossRefGoogle Scholar
  13. 13.
    Miao, Y., Liu, Z.Q., Siew, C.K., Miao, C.Y.: Dynamical cognitive network - an Extension of fuzzy cognitive. IEEE Trans. on Fuzzy Systems 9(5), 760–770 (2001)CrossRefGoogle Scholar
  14. 14.
    Axelrod, R.: Structure of decision: the cognitive maps of political elites. Princeton University Press, New Jersey (1976)Google Scholar
  15. 15.
    Stylios, C.D., Groumpos, P.P., Georgopoulos, V.C.: An Fuzzy Cognitive Maps Approach to Process Control Systems. J. Advanced Computational Intelligence 5, 1–9 (1999)Google Scholar
  16. 16.
    Papageorgiou, E.I., Parsopoulos, K.E., Stylios, C.S., Groumpos, P.P., Vrahatis, M.N.: Fuzzy cognitive maps learning using particle swarm optimization. Journal of Intelligent Information Systems 25, 95–121 (2005)CrossRefGoogle Scholar
  17. 17.
    Ghazanfari, M., Alizadeh, S., Fathian, M., Koulouriotis, D.E.: Comparing simulated annealing and genetic algorithm in learning fcm. Applied Mathematics and Computation, 56–68 (2007)Google Scholar
  18. 18.
    Acampora, G., Loia, V.: On the Temporal Granularity in Fuzzy Cognitive Maps. IEEE Transactions on Fuzzy Systems 19(6), 1040–1057 (2011)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2013

Authors and Affiliations

  • Marcio Mendonça
    • 1
  • Douglas Matsumoto
    • 1
  • Lucia V. R. Arruda
    • 2
  • Elpinik I. Papageorgiou
    • 3
  1. 1.Department of Electrical EngineeringParana Federal Technological UniversityBrazil
  2. 2.CPGEIParana Federal Technological UniversityCuritibaBrazil
  3. 3.Department of Informatics and Computer TechnologyTechnological Education Institute of LamiaLamiaGreece

Personalised recommendations