Multi-task Learning for Computational Biology: Overview and Outlook

Chapter

Abstract

We present an overview of the field of regularization-based multi-task learning, which is a relatively recent offshoot of statistical machine learning. We discuss the foundations as well as some of the recent advances of the field, including strategies for learning or refining the measure of task relatedness. We present an example from the application domain of Computational Biology, where multi-task learning has been successfully applied, and give some practical guidelines for assessing a priori, for a given dataset, whether or not multi-task learning is likely to pay off.

Keywords

Computational Biology Task Similarity Transfer Learning Target Task Multiple Kernel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We thank Klaus-Robert Müller and Mehryar Mohri for inspiring and helpful discussions. This work was supported by the German Research Foundation (DFG) under MU 987/6-1 and RA 1894/1-1 as well as by the European Community’s 7th Framework Programme under the PASCAL2 Network of Excellence (ICT-216886). Marius Kloft acknowledges a postdoctoral fellowship by the German Research Foundation (DFG).

References

  1. 1.
    Ando, R., Zhang, T.: A framework for learning predictive structures from multiple tasks and unlabeled data. J. Mach. Learn. Res. 6, 1817–1853 (2005)MathSciNetMATHGoogle Scholar
  2. 2.
    Argyriou, A., Evgeniou, T., Pontil, M.: Multi-task feature learning. In: Advances in Neural Information Processing Systems 19, Vancouver. MIT Press, Cambridge (2007)Google Scholar
  3. 3.
    Baxter, J.: A model of inductive bias learning. J. Artif. Intell. Res. 2777, 149–198 (2000)MathSciNetGoogle Scholar
  4. 4.
    Ben-David, S., Schuller, R.: Exploiting task relatedness for multiple task learning. Lect. Notes Comput. Sci. 2777, 567–580 (2003)CrossRefGoogle Scholar
  5. 5.
    Blanchard, G., Lee, G., Scott, C.: Generalizing from several related classification tasks to a new unlabeled sample. In: Advances in Neural Information Processing Systems, Granada, vol. 24 (2011)Google Scholar
  6. 6.
    Boser, B., Guyon, I., Vapnik, V.: A training algorithm for optimal margin classifiers. In: Proceedings of the Fifth Annual Workshop on Computational Learning Theory, COLT’92, Pittsburgh, pp. 144–152. ACM, New York (1992)Google Scholar
  7. 7.
    Caruana, R.: Multitask learning: a knowledge-based source of inductive bias. In: ICML, Amherst, pp. 41–48. Morgan Kaufmann (1993)Google Scholar
  8. 8.
    Caruana, R.: Multitask learning. Mach. Learn. 28(1), 41–75 (1997)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Cortes, C., Vapnik, V.: Support vector networks. Mach. Learn. 20, 273–297 (1995)MATHGoogle Scholar
  10. 10.
    Daumé, H.: Frustratingly easy domain adaptation. In: Annual Meeting—Association for Computational Linguistics, Prague, vol. 45, p. 256 (2007)Google Scholar
  11. 11.
    Evgeniou, T., Pontil, M.: Regularized multi-task learning. In: International Conference on Knowledge Discovery and Data Mining, Chicago, p. 109 (2004)Google Scholar
  12. 12.
    Evgeniou, T., Micchelli, C., Pontil, M.: Learning multiple tasks with kernel methods. J. Mach. Learn. Res. 6(1), 615–637 (2005)MathSciNetMATHGoogle Scholar
  13. 13.
    Heckerman, D., Kadie, C., Listgarten, J.: Leveraging information across HLA alleles/supertypes improves epitope prediction. J. Comput. Biol. 14(6), 736–746 (2007)CrossRefGoogle Scholar
  14. 14.
    Jacob, L., Vert, J.: Efficient peptide-MHC-I binding prediction for alleles with few known binders. Bioinformatics (Oxford, England) 24(3), 358–366 (2008)Google Scholar
  15. 15.
    Kloft, M., Brefeld, U., Sonnenburg, S., Zien, A.: Lp-norm multiple kernel learning. J. Mach. Learn. Res. 12, 953–997 (2011)MathSciNetGoogle Scholar
  16. 16.
    Lanckriet, G., Cristianini, N., Ghaoui, L.E., Bartlett, P., Jordan, M.I.: Learning the kernel matrix with semi-definite programming. JMLR 5, 27–72 (2004)MATHGoogle Scholar
  17. 17.
    Mordelet, F., Vert, J.: Prodige: prioritization of disease genes with multitask machine learning from positive and unlabeled examples. BMC Bioinf. 22, 389 (2011)CrossRefGoogle Scholar
  18. 18.
    Pan, S., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22, 1345–1359 (2009)CrossRefGoogle Scholar
  19. 19.
    Park, C., Hess, D., Huttenhower, C., Troyanskaya, O.: Simultaneous genome-wide inference of physical, genetic, regulatory, and functional pathway components. PLoS Comput. Biol. 6(11), e1001,009 (2010)Google Scholar
  20. 20.
    Schweikert, G., Widmer, C., Schölkopf, B., Rätsch, G.: An empirical analysis of domain adaptation algorithms for genomic sequence analysis. In: Koller, D., Schuurmans, D., Bengio, Y., Bottou, L. (eds.) Advances in Neural Information Processing Systems (NIPS), Vancouver, vol. 21, pp. 1433–1440 (2009)Google Scholar
  21. 21.
    Sonnenburg, S., Zien, A., Rätsch, G.: ARTS: accurate recognition of transcription starts in human. Bioinformatics 22(14), e472–e480 (2006)CrossRefGoogle Scholar
  22. 22.
    Sriperumbudur, B., Gretton, A., Fukumizu, K., Lanckriet, G., Schölkopf, B.: Injective Hilbert space embeddings of probability measures. In: Servedio, R.A., Zhang, T. (eds.) Proceedings of the 21st Annual Conference on Learning Theory, Helsinki, pp. 111–122. Omnipress (2008)Google Scholar
  23. 23.
    Vapnik, V.N., Chervonenkis, A.Y.: On the uniform convergence of relative frequencies of events to their probabilities. Theory Probab. Appl. 16(2), 264–280 (1971)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Widmer, C., Rätsch, G.: Multitask learning in computational biology. In: JMLR W&CP. ICML 2011 Unsupervised and Transfer Learning Workshop, Bellevue, vol. 27, pp. 207–216 (2012)Google Scholar
  25. 25.
    Widmer, C., Leiva, J., Altun, Y., Rätsch, G.: Leveraging sequence classification by taxonomy-based multitask learning. In: Berger, B. (ed.) Research in Computational Molecular Biology, Lisbon, pp. 522–534. Springer (2010)Google Scholar
  26. 26.
    Widmer, C., Toussaint, N., Altun, Y., Rätsch, G.: Inferring latent task structure for multitask learning by multiple kernel learning. BMC Bioinf. 11(Suppl 8), S5 (2010)CrossRefGoogle Scholar
  27. 27.
    Zhang, Y., Yeung, D.: A convex formulation for learning task relationships in multi-task learning. In: Proceedings of the 26th Annual Conference on Uncertainty in Artificial Intelligence (UAI-10), Catalina Island, pp. 733–742. AUAI Press, Corvallis (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Christian Widmer
    • 1
    • 2
  • Marius Kloft
    • 1
    • 3
  • Gunnar Rätsch
    • 1
  1. 1.Computational Biology Center, Memorial Sloan-Kettering Cancer CenterNew YorkUSA
  2. 2.Machine Learning GroupTechnische Universität BerlinBerlinGermany
  3. 3.Courant Institute of Mathematical SciencesNew York UniversityNew YorkUSA

Personalised recommendations