Authenticity Control of Relational Databases by Means of Lossless Watermarking Based on Circular Histogram Modulation

  • Javier Franco-Contreras
  • Gouenou Coatrieux
  • Nora Cuppens-Boulahia
  • Fréderic Cuppens
  • Christian Roux
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8203)


In this paper, we adapt the reversible watermarking modulation originally proposed by De Vleeschouwer et al. for images to the protection of relational databases. Message embedding is achieved by modulating the relative angular position of the circular histogram center of mass of one numerical attribute. It is fragile and can be used for database authentication. Beyond the application framework, we theoretically evaluate the performance of our scheme in terms of distortion and capacity. We further experimentally verify these theoretical limits within the framework of one medical database of more than one million of inpatient hospital stay records. We show that under the central limit theorem assumptions, experimental results fit theory.


Mean Square Error Relational Database Watermark Scheme Numerical Attribute Fragile Watermark 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    McNickle, M.: Top 10 data security breaches in 2012 in Healthcare Finance News (accessed April 17, 2013)Google Scholar
  2. 2.
    Agrawal, R., Kiernan, J.: watermarking relational databases. In: VLDB 2002: Proceedings of the 28th International Conference on Very Large Database, ch.15, pp. 155–166. Morgan Kaufmann, San Francisco (2002)Google Scholar
  3. 3.
    Sion, R., Atallah, M., Prabhakar, S.: Rights protection for relational data. IEEE Trans. on Knowledge and Data Engineering 16(12), 1509–1525 (2004)CrossRefGoogle Scholar
  4. 4.
    Gross-Amblard, D.: Query-preserving watermarking of relational databases and xml documents. ACM Trans. Database Syst. 36, 3:1–3:24 (2011)Google Scholar
  5. 5.
    Shehab, M., Bertino, E., Ghafoor, A.: Watermarking relational databases using optimization-based techniques. IEEE Trans. on Knowledge and Data Engineering 20, 116–129 (2008)CrossRefGoogle Scholar
  6. 6.
    Li, Y., Swarup, V., Jajodia, S.: Fingerprinting relational databases: schemes and specialties. IEEE Trans. on Dependable and Secure Computing 2(1), 34–45 (2005)CrossRefGoogle Scholar
  7. 7.
    Guo, F., Wang, J., Li, D.: Fingerprinting relational databases. In: Proceedings of the 2006 ACM Symposium on Applied Computing, SAC 2006. ACM, New York (2006)Google Scholar
  8. 8.
    Li, Y., Guo, H., Jajodia, S.: Tamper detection and localization for categorical data using fragile watermarks. In: Proceedings of the 4th ACM workshop on Digital Rights Management, DRM 2004, pp. 73–82. ACM, New York (2004)Google Scholar
  9. 9.
    Kamel, I., Kamel, K.: Toward protecting the integrity of relational databases. In: 2011 World Congress on Internet Security (WorldCIS), pp. 258–261. IEEE (February 2011)Google Scholar
  10. 10.
    Guo, J.: Fragile watermarking scheme for tamper detection of relational database. In: 2011 International Conference on Computer and Management (CAMAN), pp. 1–4 (May 2011)Google Scholar
  11. 11.
    Lafaye, J., Gross-Amblard, D., Constantin, C., Guerrouani, M.: Watermill: An optimized fingerprinting system for databases under constraints. IEEE Trans. on Knowledge and Data Engineering 20, 532–546 (2008)CrossRefGoogle Scholar
  12. 12.
    Bhattacharya, S., Cortesi, A.: A distortion free watermark framework for relational databases. In: Shishkov, B., Cordeiro, J., Ranchordas, A. (eds.) ICSOFT (2), pp. 229–234. INSTICC Press (2009)Google Scholar
  13. 13.
    Coatrieux, G., Chazard, E., Beuscart, R., Roux, C.: Lossless watermarking of categorical attributes for verifying medical data base integrity. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC, pp. 8195–8198. IEEE (2011)Google Scholar
  14. 14.
    Zhang, Y., Niu, X., Yang, B.: Reversible watermarking for relational database authentication. Journal of Computers 17(2) (July 2006)Google Scholar
  15. 15.
    Chang, J.N., Wu, H.C.: Reversible fragile database watermarking technology using difference expansion based on svr prediction. In: Proceedings of the 2012 International Symposium on Computer, Consumer and Control, IS3C 2012, pp. 690–693. IEEE Computer Society, Washington, DC (2012)CrossRefGoogle Scholar
  16. 16.
    De Vleeschouwer, C., Delaigle, J.F., Macq, B.: Circular interpretation of bijective transformations in lossless watermarking for media asset management. IEEE Trans. on Multimedia 5(1), 97–105 (2003)CrossRefGoogle Scholar
  17. 17.
    Mardia, K.V., Jupp, P.E.: Directional statistics. Wiley Series in Probability and Statistics. Wiley, Chichester (1999)CrossRefGoogle Scholar
  18. 18.
    Fisher, N.I.: Statistical Analysis of Circular Data. Cambridge University Press (1993)Google Scholar
  19. 19.
    Fisher, N.I., Lewis, T.: Estimating the common mean direction of several circular or spherical distributions with differing dispersions. Biometrika 70(2), 333–341 (1983)MathSciNetCrossRefGoogle Scholar
  20. 20.
    McKilliam, R.G.: Lattice theory, circular statistics and polynomial phase signals. PhD thesis, University of Queensland, Australia (2010)Google Scholar
  21. 21.
    Berenson, M., Krehbiel, T., Levine, D.: Basic Business Statistics: Concepts and Applications. Prentice-Hall (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Javier Franco-Contreras
    • 1
    • 3
  • Gouenou Coatrieux
    • 1
    • 3
  • Nora Cuppens-Boulahia
    • 2
    • 3
  • Fréderic Cuppens
    • 2
    • 3
  • Christian Roux
    • 1
    • 3
  1. 1.Institut Mines-TELECOM, TELECOM Bretagne, Inserm U1101BrestFrance
  2. 2.UMR CNRS 3192 Lab-STICCInstitut Mines-TELECOM, TELECOM BretagneCesson SévignéFrance
  3. 3.Université européenne de BretagneFrance

Personalised recommendations