Plucked String Stiffness Affects Loudness Perception

  • Mounia Ziat
  • Ilja Frissen
  • Gianni Campion
  • Vincent Hayward
  • Catherine Guastavino
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7989)

Abstract

A great variety of interactions between senses, and between motor production and senses, have been reported in previous research. In the present study, we tested whether the mechanics of a plucked string affected how the sound it produced was perceived. To test this hypothesis, we simulated the feel of a plucked string using a high fidelity haptic force-feedback device and simultaneously simulated its acoustic emission. This way, we could independently manipulate the two sensory inputs — how it felt and how it sounded — together with physical correct haptic interaction and with accurate synchronization. This arrangement makes it very plausible that the two sensory inputs came from a common source. We used a two-interval forced-choice discrimination procedure to determine the point of subjective equality of the loudness between a stiff and a soft plucked string. When the stiffness of the string was low, the sound was perceived to be softer. Interestingly, this effect was found only when the first string was less stiff than the second string plucked during a comparison. The results are consistent with the inverse effectiveness principle of multisensory integration.

Keywords

loudness perception haptic stiffness auditory-tactile integration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Repp, B.H.: Effects of auditory feedback deprivation on expressive piano performance. Music Perception 16, 409–438 (1999)CrossRefGoogle Scholar
  2. 2.
    Pfordresher, P.Q., Palmer, C.: Effects of hearing the past, present, or future during music performance. Perception and Psychophysics 68, 362–376 (2006)CrossRefGoogle Scholar
  3. 3.
    Drake, C., Penel, A., Bigand, E.: Tapping in time with mechanically and expressively performed music. Music Perception 18, 1–23 (2000)CrossRefGoogle Scholar
  4. 4.
    Goebl, W., Palmer, C.: Tactile feedback and timing accuracy in piano performance. Experimental Brain Research 186, 471–479 (2008)CrossRefGoogle Scholar
  5. 5.
    Palmer, C., Koopmans, E., Loehr, J.D., Carter, C.: Movement-related feedback and temporal accuracy in clarinet performance. Music Perception 26, 439–449 (2009)CrossRefGoogle Scholar
  6. 6.
    Avanzini, F., Crosato, P.: Haptic-auditory rendering and perception of contact stiffness. In: McGookin, D., Brewster, S. (eds.) HAID 2006. LNCS, vol. 4129, pp. 24–35. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Soto-Faraco, S., Deco, G.: Multisensory contributions to the perception of vibrotactile events. Behavioural Brain Research 196, 145–154 (2009)CrossRefGoogle Scholar
  8. 8.
    Guest, S., Catmur, C., Lloyd, D., Spence, C.: Audiotactile interactions in roughness perception. Experimental Brain Research 146(2), 161–171 (2002)CrossRefGoogle Scholar
  9. 9.
    Fletcher, H., Blackham, E.D., Stratton, R.: Quality of piano tones. J. Acoust. Soc. Am. 34(6), 749–761 (1962)CrossRefGoogle Scholar
  10. 10.
    Järvelälinen, H., Välimäki, V., Karjalainen, M.: Audibility of inharmonicity in string instrument sounds, and implications to digital sound synthesis. In: Proc. Int. Computer Music Conf., Beijing, China, pp. 359–362 (1999)Google Scholar
  11. 11.
    Marshall, M., Wanderley, M.: Vibrotactile feedback in digital musical instruments, Internat. In: Conference on New Interfaces for Musical Expression (NIME 2006), pp. 226–229 (2006)Google Scholar
  12. 12.
    Kinoshita, H., Furuya, S., Aoki, T., Altenmüller, E.: Loudness control in pianists as exemplified in keystroke force measurements on different touches. Journal of Acoustical Society of America 121, 2959–2969 (2007)CrossRefGoogle Scholar
  13. 13.
    Okazaki, R., Kajimoto, H., Hayward, V.: Vibrotactile Stimulation Can Affect Auditory Loudness: A Pilot Study. In: Isokoski, P., Springare, J. (eds.) EuroHaptics 2012, Part II. LNCS, vol. 7283, pp. 103–108. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  14. 14.
    Merchel, S., Leppin, A., Altinsoy, E.: Hearing with your body: the influence of whole-body vibrations on loudness perception. In: Proceedings of the Sixteenth International Congress on Sound and Vibration (ICSV16), Kraków, Poland, July 5-9 (2009)Google Scholar
  15. 15.
    Gillmeister, H., Eimer, M.: Tactile enhancement of auditory detection and perceived loudness. Brain Research 1160, 58–68 (2007)CrossRefGoogle Scholar
  16. 16.
    Schürmann, M., Caetano, G., Jousmäki, V., Hari, R.: Hands help hearing: facilitatory audiotactile interaction at low sound-intensity levels. J. Acoust. Soc. Am. 115(2), 830–832 (2004)CrossRefGoogle Scholar
  17. 17.
    Frissen, I., Ziat, M., Campion, G., Hayward, V., Guastavino, C.: The effects of voluntary movements on auditory-haptic and haptic-haptic temporal order judgments. Acta Psychologica 141, 140–148 (2012)CrossRefGoogle Scholar
  18. 18.
    Vitello, M.P., Ernst, M.O., Fritschi, M.: An instance of tactile suppression: Active exploration impairs tactile sensitivity for the direction of lateral movement. In: Proceeding of Eurohaptics, Paris, July 3-6, pp. 351–355 (2006)Google Scholar
  19. 19.
    Kitagawa, N., Kato, M., Kashino, M.: Assessing the effect of voluntary action on sensitivity to temporal asynchrony between auditory and somatosensory events. In: 10th International Multisensory Research Forum (IMRF), New York, June 29 - July 2 (2009)Google Scholar
  20. 20.
    Campion, G., Wang, Q., Hayward, V.: The Pantograph mk-II: A haptic instrument. In: Proceedings of the Internat. Conf. on Intelligent Robots and Systems 2005, pp. 723–728 (2005)Google Scholar
  21. 21.
    Karplus, K., Strong, A.: Digital Synthesis of Plucked String and Drum Timbres. Computer Music Journal 7(2), 43–55 (1983)CrossRefGoogle Scholar
  22. 22.
    Wichmann, F.A., Hill, N.J.: The psychometric function: I. Fitting, sampling, and goodness of fit. Perception & Psychophysics 63, 1293–1313 (2001)CrossRefGoogle Scholar
  23. 23.
    Fox, J., Weisberg, S., An, R.: An R companion to applied regression, 2nd edn. Sage Publications, Thousand Oaks (2011)Google Scholar
  24. 24.
    Stein, B.E., Meredith, M.A.: The merging of the senses. MIT Press, Cambridge (1993)Google Scholar
  25. 25.
    Coren, S., Ward, L.M., Enns, J.T.: Sensation and perception. Harcourt Brace, Fort Worth (1999)Google Scholar
  26. 26.
    Odgaard, E.C., Arieh, Y., Marks, L.E.: Cross-modal enhancement of perceived brightness: Sensory interaction versus response bias. Perception & Psychophysics 65(1), 123–132 (2003)CrossRefGoogle Scholar
  27. 27.
    Hairston, I.S., Nagarajan, S.S.: Neural mechanisms of the time-order error: An MEG study. Journal of Cognitive Neuroscience 19, 1163–1174 (2007)CrossRefGoogle Scholar
  28. 28.
    Zatorre, R.J., Chen, J.L., Penhune, V.B.: When the brain plays music: auditory-motor interactions in music perception and production. Nat. Rev. Neuroscience, 547–558 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Mounia Ziat
    • 1
  • Ilja Frissen
    • 2
  • Gianni Campion
    • 3
  • Vincent Hayward
    • 4
  • Catherine Guastavino
    • 2
  1. 1.Department of PsychologyNorthern Michigan UniversityMarquetteUSA
  2. 2.Media and TechnologyMcGill University & Centre for Interdisciplinary Research on MusicMontrealCanada
  3. 3.McGill UniversityMontrealCanada
  4. 4.Institut des Systèmes Intelligents et de RobotiqueUPMC Univ Paris 06ParisFrance

Personalised recommendations