Advertisement

Potential Tissue Puncture Notification during Telesurgery

  • Rachael L’Orsa
  • Kourosh Zareinia
  • Liu Shi Gan
  • Chris Macnab
  • Garnette Sutherland
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7989)

Abstract

This paper proposes the use of vibrotactile feedback during telesurgery to notify surgeons of potential tissue puncture. Puncture trials using an experimental telesurgical apparatus were performed on an artificial membrane to characterize general force ranges at which punctures occur. The average force threshold during puncture was established, and human operators then attempted to apply a maximum force to the membrane without causing a puncture via the telesurgical apparatus. As the surgical tool-tip approached the pre-established force threshold, a wrist-mounted haptuator worn by the operators vibrated a warning. Warnings via different sensory modalities (auditory and tactile) were compared both with and without force feedback. Results show that the use of a warning via either sensory modality decreases the maximum force applied by the operator, thereby decreasing the occurrence of unintentional punctures. The inclusion of force feedback achieved similar results, though task completion times were significantly increased.

Keywords

haptics haptuator keyhole surgery teleoperation telesurgery tissue puncture 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Varela, J.E., Wilson, S.E., Nguyen, N.T.: Laparoscopic surgery significantly reduces surgical-site infections compared with open surgery. Surg. End. 24(2), 270–276 (2010)CrossRefGoogle Scholar
  2. 2.
    Reisch, R., Stadie, A., Kockro, R.A., Hopf, N.: The Keyhole Concept in Neurosurgery. World Neurosurgery (2012), http://www.sciencedirect.com/science/article/pii/S187887501200157X
  3. 3.
    Meireles, O., Horgan, S.: Applications of surgical robotics in general surgery. In: Rosen, J., Hannaford, B., Satava, R.M. (eds.) Surgical Robotics: Systems Applications and Visions, pp. 791–812. Springer (2010)Google Scholar
  4. 4.
    Ahlering, T.E., Skarecky, D., Lee, D., Clayman, R.V.: Successful Transfer of Open Surgical Skills to a Laparoscopic Environment Using a Robotic Interface: Initial Experience With Laparoscopic Radical Prostatectomy. J. Urology. 170(5), 1738–1741 (2003)CrossRefGoogle Scholar
  5. 5.
    Ballantyne, G.: Telerobotic Gastrointestinal Surgery: Phase 2Safety and Efficacy. Surg. End. 21(7), 1054–1062 (2007)CrossRefGoogle Scholar
  6. 6.
    Carlsson, S., Nilsson, A.E., Schumacher, M.C., Jonsson, M.N., Volz, D.S., Steineck, G., Wiklund, P.N.: Surgery-related Complications in 1253 Robot-assisted and 485 Open Retropubic Radical Prostatectomies at the Karolinska University Hospital, Sweden. Urology. 75(5), 1092–1097 (2010)CrossRefGoogle Scholar
  7. 7.
    Grantcharov, T.P., Kristiansen, V.B., Bendix, J., Bardram, L., Rosenberg, J., Funch-Jensen, P.: Randomized clinical trial of virtual reality simulation for laparoscopic skills training. Brit. J. Surg. 91(2), 146–150 (2004)CrossRefGoogle Scholar
  8. 8.
    Xin, H., Zelek, J.S., Carnahan, H.: Laparoscopic surgery, perceptual limitations and force: A review. In: First Canadian Student Conference on Biomedical Computing, Kingston (2006)Google Scholar
  9. 9.
    Cuss, A., Abbott, J.: Complications of laparoscopic surgery. Obstetrics, Gynaecology and Reproductive Medicine 22(3), 59–62 (2012)CrossRefGoogle Scholar
  10. 10.
    Lee, J.D., Hoffman, J.D., Hayes, E.: Collision warning design to mitigate driver distraction. In: SIGCHI Conference on Human Factors in Computing Systems, Vienna, pp. 65–72 (2004)Google Scholar
  11. 11.
    Spence, C., Ho, C.: Multisensory warning signals for event perception and safe driving. Theoretical Issues in Ergonomics Science 9(9), 523–554 (2008)CrossRefGoogle Scholar
  12. 12.
    Okazaki, R., Kajimoto, H., Hayward, V.: Vibrotactile stimulation can affect auditory loudness: A pilot study. In: Isokoski, P., Springare, J. (eds.) EuroHaptics 2012, Part II. LNCS, vol. 7283, pp. 103–108. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  13. 13.
    Bark, K., McMahan, W., Remington, A., Gewirtz, J., Wedmid, A., Lee, D.I., Kuchenbecker, K.J.: In Vivo Validation of a System for Haptic Feedback of Tool Vibrations in Robotic Surgery. Surg. End., 1–9 (2012)Google Scholar
  14. 14.
    Bianchi, M., Gwilliam, J.C., Degirmenci, A., Okamura, A.M.: Characterization of an air jet haptic lump display. IEEE Eng. Med. Biol. Soc., 3467–3470 (2011)Google Scholar
  15. 15.
    Gwilliam, J.C., Pezzementi, Z., Jantho, E., Okamura, A.M., Hsiao, S.: Human vs. robotic tactile sensing: Detecting lumps in soft tissue. In: IEEE Haptics Symposium, Waltham, pp. 21–28 (2010)Google Scholar
  16. 16.
    Okamura, A.M., Webster III, R.J., Nolin, J.T., Johnson, K.W., Jafry, H.: The Haptic Scissors: Cutting in Virtual Environments. In: International Conference on Robotics and Automation, Taipei, pp. 828–833 (2003)Google Scholar
  17. 17.
    Park, J.W., Choi, J., Park, Y., Sun, K.: Haptic Virtual Fixture for Robotic Cardiac Catheter Navigation. Artificial Organs. 35(11), 1127–1131 (2011)CrossRefGoogle Scholar
  18. 18.
    Gibo, T.L., Verner, L.N., Yuh, D.D., Okamura, A.M.: Design Considerations and Human-Machine Performance of Moving Virtual Fixtures. In: International Conference on Robotics and Automation, Kobe, pp. 671–676 (2009)Google Scholar
  19. 19.
    Yao, H.Y., Hayward, V.: Design and analysis of a recoil-type vibrotactile transducer. J. Acous. Soc. Am. 128(2), 619–627 (2010)CrossRefGoogle Scholar
  20. 20.
    Lang, M.J., Greer, A.D., Sutherland, G.R.: Intra-operative Robotics: NeuroArm. In: Intraoperative Imaging Acta Neurochirurgica Supplementum, pp. 231–236. Springer-Verlag (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Rachael L’Orsa
    • 1
  • Kourosh Zareinia
    • 2
  • Liu Shi Gan
    • 2
    • 3
  • Chris Macnab
    • 1
  • Garnette Sutherland
    • 2
  1. 1.Department of Electrical and Computer EngineeringUniversity of CalgaryCanada
  2. 2.Project neuroArm, Faculty of MedicineUniversity of CalgaryCanada
  3. 3.IMRIS Inc.WinnipegCanada

Personalised recommendations